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Abstract. Motivated by a collaborative study with one of the most comprehensive ocular
imaging programs in the United States, we investigate the underlying three-way trade-off
among operational, clinical, and financial considerations in physicians’ decisions about
ordering imaging tests. Laboratory tests may be processed in parallel and thus have a lim-
ited effect on patients’ waiting times; imaging tests, by contrast, require patient presence
and thus directly influence patients’ waiting times. We use a strategic queueing framework
to model a physician’s decision of ordering imaging tests and show that insurance cover-
age is the key driver of overtesting. Our further analysis reveals the following: (i) Whereas
existing studies hold that lower out-of-pocket expenses lead to higher consumption levels,
we refine this statement by showing the copayment and the coinsurance rate drive the
consumption in different directions. Thus, simply expanding patient cost sharing is not
the solution to overtesting. (ii) Setting a low reimbursement ceiling alone cannot eliminate
overtesting. (iii) The joint effect of misdiagnosis concerns and insurance coverage can lead
to both overtesting and undertesting even when no reimbursement ceiling exists. These
and other results continue to hold under more general conditions and are therefore robust.
We enrich our model along two extensions: one with patient heterogeneity in diagnostic
precision, and the other with disparities in health insurance coverage. Our findings have
implications for other healthcare settings with similar trade-offs.
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1. Introduction
Excessive usage of imaging tests (hereafter referred to
as “overtesting”) is generally attributed to either health
providers’ misaligned monetary incentives (Gawande
2015) or physicians’ misdiagnosis concerns, as noted
by Pinker (2012, p. 506): “A physician may order tests
that have a low probability of influencing decisions
or treatment, to play it safe and protect himself from
malpractice lawsuits, knowing that the patient will
not bear the financial costs of the tests.” Our collab-
orative study with the University of Pittsburgh Med-
ical Center (UPMC) Eye Center, which houses one
of the most comprehensive ocular imaging programs
in the United States, revealed a different picture. In
the existing payment model at the UPMC, insurance
plans approve payment for only one test per day per
patient. Moreover, depending on the type of test and
disease, insurance firms limit the number of reim-
bursable tests. For instance, when a physician orders
three tests for a patient, the physician understands the
insurance firm will reimburse only one test, and the
other two will not generate additional service revenue.

However, overtesting has been consistently observed
at the UPMC Eye Center despite physicians’ general
lack of direct monetary incentives and misdiagnosis
concerns (Dai et al. 2009).

Based on our interviews with physicians and
patients at the UPMC Eye Center, we identified three
crucial factors behind patients’ decisions to visit doc-
tors’ offices: out-of-pocket expense, waiting time, and
service quality. First, in the U.S. healthcare market,
the majority of patients are insured and pay less than
the actual service charge. Second, longer waiting times
lead to lower patient volume, all else being equal
(Martin and Smith 2003). Third, patients value ser-
vice quality, which (at least perception-wise) often
increases in the quantity of diagnostic tests, though
the marginal return from ordering additional tests
may be diminishing (Mold et al. 2010). In practice,
patient perception of service quality may be relevant
to other factors such as responsiveness and empathy;
we assume away from these factors and focus on the
service intensity because it is more controllable from
the viewpoint of physician decision making. These

99

http://pubsonline.informs.org/journal/msom/
mailto:dai@jhu.edu
mailto:akan@andrew.cmu.edu
mailto:stayur@andrew.cmu.edu
https://doi.org/10.1287/msom.2016.0594


Dai, Akan, and Tayur: Physicians’ Test-Ordering Behavior in Outpatient Services

100 Manufacturing & Service Operations Management, 2017, vol. 19, no. 1, pp. 99–113, © 2016 INFORMS

three aspects echo the iron triangle of U.S. healthcare,
namely, cost, access, and quality (Kissick 1994).

In modeling physician decision making in the ocular
imaging setting, we capture key financial, operational,
and clinical incentives that govern the interactions
between the physician and patients. Whereas the
physician strikes a balance between system through-
put and diagnostic certainty, patients optimally trade
off between waiting time, out-of-pocket expense, and
service quality. We characterize the physician’s opti-
mal service parameters and patients’ queue-joining
decisions, which we refer to as the market equilibrium,
as opposed to the social optimum in which the social
welfare is maximized. The measure of inefficiency is
the loss of social welfare with respect to the socially
efficient administration of imaging tests. Our model
reveals several interesting results that help us under-
stand physicians’ decision making in the ocular imag-
ing setting.

First, we show that even in the absence of the fee-
for-service payment system and other commonly cited
reasons, overtesting can still occur due to the insur-
ance coverage that distorts the price signal. This result
is aligned with the empirical literature, with the dif-
ference that overtesting occurs even in the absence of
asymmetric information.

Second, although existing studies show that lower
out-of-pocket expenses lead to higher consumption
levels, we refine this statement by showing the copay-
ment and the coinsurance rate can drive the consump-
tion in opposite directions.

Third, when insurance firms impose reimbursement
ceilings on physician practices, they essentially restrict
physicians’ pricing power. Under a reimbursement
ceiling, we show overtesting can nonetheless occur
even when the ceiling is low, and increasing the share
of patients’ cost sharing (e.g., coinsurance rate) can
induce the ordering of more tests.

Fourth, in some situations, physicians are concerned
about potential misdiagnosis and may perceive a “bur-
den of proof” that decreases in the intensity of testing.
Contrary to conventional wisdom, we show that both
overtesting and undertesting are possible outcomes of
the introduction of misdiagnosis concerns. The under-
lying intuition is that physicians’ misdiagnosis con-
cerns raise the socially efficient consumption level.

Figure 1. Flow Schematic for Imaging Services
Pre-exam Exam Post-exam

Wait on the schedule Imaging tests Reading tests
Patient
arrivals

Patient departures

Source. Adapted from Hopp and Lovejoy 2012.

In addition, we consider two extensions on patient
heterogeneity in diagnostic precision and disparities in
health insurance coverage, respectively.

1.1. Salient Features of the UPMC
Eye Center Scenario

We describe the salient features in ordering and con-
ducting ocular imaging tests at the UPMC Eye Center,
which is representative of many academic, elective out-
patient settings. Figure 1 shows the flow schematic of
conducting imaging tests.

At the UPMC Eye Center, when physicians order
imaging tests, they typically order multiple tests all at
once; this process is in contrast to a sequential test-
ing process (i.e., start from one test and then decide
whether to order further tests, depending on the infor-
mation collected from the first test, and so on) in other
clinical settings. A typical order is a combination of
tests such as OCT (short for “optical coherence tomog-
raphy,” which provides cross-sectional analysis of bire-
fringent tissues in the eye), GDx (short for “glaucoma
diagnosis,” which measures the thickness of the retinal
nerve to determine the occurrence of structural dam-
age), and HRT3 (short for “Heidelberg Retina Tomo-
graph,” which provides a 3D topography image of the
optic nerve). Few patients require a second batch of
tests to be ordered for the same complaint.

As mentioned previously, the payment system is
non-fee-for-service, but the phenomenon of overtest-
ing has been observed at the UPMC Eye Center, as
demonstrated by significant variation in test-ordering
patterns even for patients with comparable condi-
tions (Dai et al. 2012). Because of extensive testing
for patients, a high utilization rate exists and leads to
patients’ long waiting times for imaging tests. More
generally, Hopp and Lovejoy (2012, p. 368) contend
that in a typical imaging-test unit, the time waiting on
schedule is the single largest source of delay in obtain-
ing images for most patients. Hopp and Lovejoy (2012,
p. 367) also highlight that the key distinction between
laboratory tests (e.g., blood tests) and imaging tests is
patient contact: “For laboratory tests, all that is needed
from a patient is a specimen, which can be collected
remotely in a hospital room, clinic, physician’s office,
or even by the patient himself at home. With a few
exceptions . . .patients must generally come to a central
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location to be scanned to produce images.” Therefore,
the service rate associated with imaging tests limits the
patient throughput.

1.2. Broader Implications
Although our research was initially motivated by the
operations of an ophthalmology practice at an aca-
demic hospital (UPMC), our model applies to more
(but not all) types of in-house imaging practices. In par-
ticular, we consider an elective care setting in which
(1) patients call in for nonurgent health issues, (2) dis-
cretion in testing allows different levels of thorough-
ness, (3) waiting times are driven by the fact that
imaging is the constraint of patient flow (we found
this feature is not suitable for small practices), and
(4) more tests do not necessarily generate higher rev-
enue. Beyond the academic hospital with which we
collaborated (UPMC), we have found that the above
features are typical in mid- to large-size ocular imag-
ing practices (20 or more physicians). Furthermore, this
model applies to examples other than the eye clinic. For
example, the imaging units in the orthopaedics setting
share multiple operational features.

Admittedly, the results in this paper are based on a
set of assumptions drawn from our observational study
in the academic ophthalmology setting. But the results
have broader implications to other healthcare settings
in which (1) the quality of a patient’s received care
is known to correlate positively with the amount of
time and resources dedicated to the patient; (2) physi-
cians value clinical, financial, and operational aspects
in making procedural decisions; and (3) patients value
quality of care as well as their waiting time and
out-of-pocket expenses. By not explicitly modeling
the fee-for-service payment structure, our model iso-
lates its well-known and obvious incentive effect and
helps focus our attention on investigating nonobvious
aspects of physicians’ test-ordering behavior.

Our work joins in the first attempts of the operations
management community to understand the immensely
complex web of incentives in the U.S. healthcare sys-
tem, widely known today for its inefficiency. One major
aspect of the inefficiency is overtesting (Gawande 2009,
2015). Unfortunately, conventional cost-containment
strategies are ineffective, because as Young and Salt-
man (1985) argue in the book The Hospital Power Equi-
librium: Physician Behavior and Cost Control, these strate-
gies offer little to help bridge the divide between
administrators and physicians, with conflicting objec-
tives and incentives. Young and Saltman (1985) fur-
ther argue that the cost of healthcare is largely driven
by physician behavior. To curb the phenomenon of
overtesting, the first step entails understanding its
underlying drivers (Rao and Levin 2012).

1.3. Literature Review
Our study continues the themes of expert services liter-
ature, for which Dulleck and Kerschbamer (2006) pro-
vide an extensive review. Shumsky and Pinker (2003)
study the incentive compensation scheme for “gate-
keepers” who are imperfectly capable of solving cus-
tomers’ problems and may need to refer them to spe-
cialists. Debo et al. (2008) model a monopolist expert
who offers a service with unverifiable duration and
hence has the incentive to delay the service. While
embedding asymmetric information, their model does
not address the differences in service quality. Debo and
Veeraraghavan (2014), similar to us, assume service
time and service quality are positively correlated, but
they focus on analyzing strategic consumers’ queue-
joining behavior. Paç and Veeraraghavan (2015) model
the interaction between customers with problems that
can be either major or minor by nature and an expert
who may choose not to reveal the true nature of various
problems to sell more extensive services.

In recent years, literature on service design under
congestion has flowered. Wang et al. (2010) consider
the problem of a diagnostic service manager who
needs to strike a balance between service accuracy,
waiting time, and staffing costs. Alizamir et al. (2013)
examine how to dynamically manage the trade-off
between diagnostic accuracy and system congestion.
Kostami and Rajagopalan (2013) analyze the intertem-
poral trade-off between speed and quality in a general
service setting. Tong and Rajagopalan (2014) study the
pricing strategy for discretionary services when the
service outcome is contractible and is directly driven
by the service provider’s service choice. Our paper
addresses a trade-off similar to as those in Wang et al.
(2010) and Alizamir et al. (2013) but focuses on the eco-
nomic side of physicians’ test-ordering behavior.

Most relevant to our paper is the study by Anand
et al. (2011) on a service provider’s quality–speed
trade-off when customers are strategic. They show the
customer intensity of the industry is a major determi-
nant of the service provider’s decision. Furthermore,
they analyze the competition among multiple service
providers and show that higher prices and service
quality can result from a more intense competition.
Our paper differs from Anand et al. (2011) in that we
consider insurance coverage in the healthcare market
and emphasize the profound impact of insurance struc-
ture on the service usage under various service envi-
ronments. Furthermore, we compare service consump-
tion levels in the market equilibrium and in the social
optimum. In addition, we consider a scenario in which
the service provider chooses more than one service
rate to achieve the same quality target across different
patient types.

Our paper is relevant to several papers in the oper-
ations literature on reimbursement design for health-
care providers, ranging from early work by Dada and
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White (1999) and So and Tang (2000) to recent work
by Gupta and Mehrotra (2015). The most salient differ-
ence separating our paper from this literature is that
whereas the literature focuses on healthcare providers’
financial risks, we study the effect of patients’ out-
of-pocket expenses on physicians’ medical decision
making.

The supplier-induced demand (SID) literature con-
tends that doctors, as service providers, can directly
influence patients’ service usage. Patients seek advice
from doctors largely because they cannot reach in-
formed medical decisions on their own. Whereas
early SID models often view patients as perfectly
informed but passive consumers, later studies treat
patients as Bayesian decision makers whose informa-
tion-acquisition mechanism affects physicians’ behav-
ior. Our paper differs from the SID literature in three
ways. First, SID models generally assume physicians
can observe patients’ private information at no cost.
Second, although waiting time limits the patients’
access to healthcare, SID models treat it as a mecha-
nism to control utilization and hence reduce the cost
of ex post moral hazard (Gravelle and Siciliani 2008):
the waiting time is the healthcare provider’s unilat-
eral decision rather than an outcome of physician–
patient interaction. Third, the SID literature typically
assumes a fee-for-service payment model. For example,
Sorensen and Grytten (1999) work on the premise that
only contract physicians in Norway, whose incomes
derive exclusively from patient visits or laboratory
tests, have the incentive to induce demand. Our paper,
by addressing the trade-off among cost, access, and
quality, justifies incentives to overtest even when more
services do not imply additional revenue.

This paper proceeds as follows. In Section 2, we
present our modeling framework. Section 3 analyzes
the effect of insurance structure, reimbursement ceil-
ing, and misdiagnosis concerns. Then we enrich our
model along two directions: Section 4 considers patient
heterogeneity in diagnostic precision; Section 5 consid-
ers disparities in health insurance coverage. Section 6
summarizes the key implications from our study for
policy makers. In Section 7, we conclude. All the tech-
nical proofs are relegated to Online Appendix A.

2. Model
In this section, we model the interaction between a
physician and a group of patients with exogenous
demand. We start by formalizing the relationship
between imaging-test ordering and service quality.
We then model the trade-offs the patients and the
physician face. Finally, we characterize the market
equilibrium and the social optimum, which gives the
condition of overtesting.

2.1. Imaging-Test Ordering and Service Quality
We capture the physician’s test-ordering decision by
the service rate µ that measures the speed of the over-
all imaging service, based on our observation that
a higher service rate results from demanding fewer
imaging tests. In reality, the service rate is chosen from
a discrete set. (In the case of the UPMC Eye Center,
each ordered imaging test is assigned a slot of a given
length, and the number of tests being ordered for a
patient directly influences the service rate of conduct-
ing imaging tests.) For tractability, we assume the ser-
vice rate is a continuous variable. The service quality
given average service rate µ is defined as

Q(µ) :⇤ Qc + ↵(µc � µ), (1)

where Qc denotes the baseline service quality; µc refers
to the baseline service rate, that is, Q(µc) ⇤ Qc ; ↵
describes the rate at which the service quality improves
when the service rate decreases. It follows from (1)
that Q(µ) is a decreasing affine function of µ, mean-
ing more tests (i.e., a slower service rate) lead to higher
service quality. This model is aligned with an elec-
tive outpatient setting such as an ophthalmology clinic,
where additional imaging tests do not lead to the
phenomenon of “overdiagnosis”; rather, more imag-
ing tests lead to better image resolution and increased
diagnosis accuracy (Dai et al. 2009). We use this func-
tion for simplicity of representation; our major insights
extend to the case in which Q( · ) is a general concave
and nonmonotonic function.

2.2. Patient Utility
Patients’ utility from the service depends on three key
factors: service quality, waiting time, and out-of-pocket
payment. Patients are covered by indemnity insur-
ance and pay less than the nominal service charge.
A patient’s health insurance plan contains several key
components: the deductible is the accumulative out-
of-pocket expense to trigger insurance coverage; the
copayment is the fixed charge the patient must pay
out of pocket for each visit; the coinsurance rate is the
percentage of the service fee, after accounting for the
copayment, the patient has to pay out of pocket. We
ignore the deductible to avoid the difficulty of defin-
ing the service fee below the deductible (Newhouse
1978); in practice, the deductible may play some role
in influencing patient demand, and the importance of
such a role may depend on the timing of the visit.
All patients have the same insurance coverage with
zero deductible, a copayment of ⇡, and a coinsurance
rate of �. Later, in Section 5, we allow patients to dif-
fer in their health insurance coverage. The premium is
viewed as a sunk cost and ignored. Letting p denote the
nominal service fee, the patient’s out-of-pocket pay-
ment is hence ⇡ + �(p � ⇡), because we focus solely on
the interesting case in which p � ⇡.
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Patients arrive at an exogenous rate ⇤, which is
referred to as the potential demand for the service.
Upon observing the physician’s chosen service rate µ
and service fee p, patients make queue-joining deci-
sions by adopting the following mixed strategies: each
patient joins the queue with probability ⇢(µ, p), and
balks and resorts to an outside option with probability
1� ⇢(µ, p). Each patient’s reservation utility is normal-
ized to be zero without loss of generality. The induced
arrival rate can be denoted as a function of µ and p
such that �(µ, p)⇤ ⇢(µ, p) ·⇤. ⇤ is assumed to be large
enough to avoid the situations with zero or full cover-
age (i.e., ⇢(µ, p)⇤ 0 or 1) in equilibrium. This setting is
consistent with the literature on the equilibrium behav-
ior of customers and service providers in queueing
systems (Hassin and Haviv 2003).

The potential demand for the service follows a Pois-
son process, a reasonable representation for arrival
processes in healthcare applications (Green 2006); thus,
the induced arrival process resulting from patients’
joint randomized decisions also follows a Poisson
process. For simplicity, we assume service time is expo-
nentially distributed, and the service setting corre-
sponds to an M/M/1 queue; our major results carry
over to a general service-time distribution. Consistent
with money price models (e.g., Coffey 1983), we define
the patient’s waiting time W(µ, �) as the amount of
time a patient spends in the system before a diagno-
sis is reached (i.e., the sojourn time); in our partic-
ular setting, the waiting time consists mostly of the
patient’s time on the schedule for an appointment. The
expected time in the system is given by W(µ, �(µ, p))⇤
1/[µ� �(µ, p)]. Let ! denote the patient’s waiting cost
per unit of time. In practice, ! can be estimated as
the value of lost productivity while waiting in the
service queue (Phelps and Newhouse 1974). The sum
of out-of-pocket expense ⇡ + �(p � ⇡) and waiting
cost !W(µ, �(µ, p)) is referred to as the full price.
Then, using the market-clearing condition Q(µ) ⇤ ⇡ +

�(p � ⇡)+!W(µ, �(µ, p)) that equates the service qual-
ity to its full price and substituting for W , we obtain
the induced arrival rate

�(µ, p)⇤ µ�![Q(µ)� ⇡� �(p � ⇡)]�1.

In reality, the physician classifies patients into a
number of pretest types such that within each pretest
type, the physician orders a virtually identical set of
tests for each patient. Although such a patient mix
faced by the physician is best described by multiple
classes of arrivals in a queueing network, in our base-
line model, we choose to focus on modeling patients
who are classified as the same pretest type and ulti-
mately face the set of imaging tests. This simplification
allows us to analytically characterize patients’ strate-
gic queue-joining decisions in response to the service

parameters. Later, in Section 4, we consider the physi-
cian’s test-ordering problem in the presence of multiple
patient types.

2.3. Physician Decision
We treat the physician as a price setter such that “the
physician is assumed to have some control over the
price he can charge and still obtain business” (Pauly
1980, p. 3); this assumption is supported by patients’
free choice of physicians, meaning that “in any nego-
tiation over price between a physician and an insurer
physicians have substantial bargaining power” (New-
house 2002, p. 10). Recognizing that prices are set
administratively in many situations (Gaynor and Town
2012), we will discuss in Section 3.2 an alternative sce-
nario in which the service fee is subject to a price
ceiling. The physician chooses the target service qual-
ity (through choosing a service rate µ) and a service
fee p to maximize the revenue rate g(µ, p) ⇤ p�(µ, p).
This model is an extension of Anand et al. (2011) with
the critical difference that each customer pays a lin-
ear function of price, which allows us to draw insights
about the impact of insurance structure on the physi-
cian’s test-ordering decisions. We have numerically
shown that our main insights carry over if we relax
the assumption that quality decreases linearly in ser-
vice rate (e.g., the physician chooses an integer number
of tests to reach the desired diagnostic precision, and
the service time follows an Erlang distribution with an
exogenous scale parameter), suggesting that this model
is a good starting point of studying physicians’ test-
ordering decisions.

We assume Qc < ↵µc + (1 � �)⇡ to rule out the triv-
ial case µ⇤ � µc . The assumption requires that the
baseline service quality Qc is lower than the sum of
(1) ↵µc ⇤ limµ!0 Q(µ)�Qc , the unattainable, maximum
improvement in service quality, and (2) (1 � �)⇡, each
patient’s copayment net of �, which is covered by the
insurance. We characterize the equilibrium below. Note
that we require that � > 0; if � ⇤ 0, a reimbursement
ceiling—an issue that we will address in Section 3.2—
has to be in place.

Proposition 1. A unique market equilibrium exists in
which

(i) the physician chooses the service rate µ⇤ ⇤ [Qc +↵µc �
(1� �)⇡]/(2↵) and the service fee p⇤ ⇤ (↵/�)(µ⇤ �

p
!/↵)�

(ii) the induced arrival rate is �⇤ ⇤ µ⇤ �
p
!/↵�

(iii) the average waiting time is W ⇤ ⇤
p
↵/!.

In equilibrium, the waiting time does not depend
on the insurance structure. Because the waiting time
W(µ⇤ , �⇤) ⇤ (µ⇤ � �⇤)�1 spent per patient in the system
depends only on the “surplus” service level µ⇤ ��⇤, the
optimal solution balances the cost ↵ of increasing the
service rate (i.e., the reduced diagnostic quality) with
the reduction ! in each patient’s waiting costs.
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2.4. Social Optimum and Overtesting Condition
The benchmark used to characterize overtesting is the
social optimum that involves a social planner who
determines the admission policy and the service rate
to maximize the social welfare. Each physician–patient
interaction generates a social surplus that is equal to
the service quality, less patients’ disutility from wait-
ing. The expected social welfare rate is formulated as
follows:

U(µ, �)⇤ � · {Q(µ)�!W(µ, �)}.

The following proposition gives the socially efficient
service rate and arrival rate, denoted by µS and �S,
respectively.

Proposition 2. In the social optimum,
(i) the optimal service rate is µS ⇤ (Qc + ↵µc)/(2↵)�
(ii) the optimal arrival rate is �S ⇤ (Qc + ↵µc)/(2↵)

�
p
!/↵�

(iii) the expected waiting time is WS ⇤
p
↵/!.

The above social-optimum result coincides with
Proposition 2 in Anand et al. (2011), which character-
izes the market equilibrium when each customer pays
the full amount of the service fee.

Next, we compare the market equilibrium with the
social optimum.

Corollary 1. (i) The physician orders at least as many tests
as in the market equilibrium, that is, µ⇤  µS.

(ii) The arrival rate in the social optimum is at least as
large as in the market equilibrium, that is, �⇤  �S.

(iii) The average waiting time is the same under the social
optimum and in the market equilibrium, that is, WS ⇤

W ⇤ ⇤
p
↵/!.

In the market equilibrium, the physician overtests
due to the price distortions introduced by insurance
coverage. This result is aligned with Feldstein’s (1973)
empirical finding that raising the coinsurance rate
increases social welfare. In fact, when ⇡ ⇤ 0 and � ⇤ 1,
patients are responsible for the entire payment, and
the physician sets the service rate at the socially effi-
cient level.

3. Analysis
This section analyzes the effects of insurance structure,
reimbursement ceiling, and misdiagnosis concerns. We
also briefly describe a robustness check of our key
results.

3.1. Insurance Structure
We first examine the effect of the copayment and
coninsurance components of the insurance plan on
the physicians’ test-ordering behavior. Proposition 1
implies the following result.

Corollary 2. (i) The physician’s optimal service rate µ⇤ de-
creases in the copayment ⇡ and increases in the coinsurance
rate �.

(ii) The physician’s optimal service fee p⇤ decreases in
both the copayment ⇡ and the coinsurance rate �.

The literature often suggests that increasing the
patients’ out-of-pocket expenses leads to decreased
consumption of medical resources. The above corol-
lary, by contrast, reveals the copayment and the coin-
surance rate can drive the consumption of imaging
tests in opposite directions. In particular, the number
of tests increases in the copayment ⇡ but decreases in
the coinsurance rate �. To understand why, note the
market-clearing condition

⇡+ �(p⇤ � ⇡)⇤ Q(µ⇤)�W ⇤.

We have from Proposition 1 that W ⇤ ⇤
p
↵/!, which

does not depend on ⇡ or �. Thus, for a service fee p⇤,
the change in ⇡ or � would need to be balanced by a
change in µ⇤. As the copayment goes up, the physician
needs to cut the service fee to ease the patients’ mone-
tary burden. Nevertheless, each patient’s out-of-pocket
expense still goes up, because cutting the service fee
by one dollar only reduces each patient’s out-of-pocket
expenses by � < 1 dollar, necessitating more tests to
match the patients’ increased monetary burden. With a
higher coinsurance rate, however, the physician would
charge a lower service fee, which leads to a reduced
out-of-pocket expense for each patient and justifies the
physician ordering fewer tests. Note that in practice,
it is possible that the coinsurance component signif-
icantly outweighs the copayment component; in this
case, the effect of the coinsurance would dominate that
of the copayment.

To the best of our knowledge, ours is the first analyt-
ical finding about the impact of per-visit copayment on
physicians’ test-ordering behavior. Supporting empiri-
cal evidence exists for this result. For example, under
an outpatient setting, Jung (1998) shows that increas-
ing the per-visit copayment significantly reduces the
number of office visits but increases the intensity of
medical resource consumption for each visit.

Our results have implications on the impact of the
increased health insurance coverage made possible by
the Patient Protection and Affordable Care Act, under
which more individuals have gained insurance cov-
erage. From our results derived under an outpatient
imaging-unit setting, we find the structure of health
insurance plays an important role in influencing physi-
cians’ service decisions. Thus, a singular focus on
improving insurance coverage may not necessarily lead
to a more efficient health system.

Next, we examine the effect of the insurance struc-
ture on the social welfare gap between the market equi-
librium and the social optimum. The social welfare
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gap, written as a function of � and ⇡, is �U(⇡, �) ⇤
U(µS , �S)�U(µ⇤ , �⇤) ⇤ ⇡2(1� �)2/(4↵), and its second-
order derivatives in terms of � and ⇡ are @2�U/@�2 ⇤

⇡2/(2↵) � 0 and @2�U/@⇡2 ⇤ (1� �)2/(2↵) � 0, respec-
tively. Hence we have the following corollary.

Corollary 3. The social welfare gap is convex decreasing in
the coinsurance rate �, and convex increasing in the copay-
ment ⇡.

As the copayment increases, the physician tends to
order more tests for each patient, but the induced
arrival rate decreases. Combining the decreased arrival
rate with the increased testing intensity per patient
visit, we observe that fewer individuals consume more
resources at any given period of time, widening the
social welfare gap at a faster pace. This result explains
why the social welfare gap is convex increasing in the
copayment ⇡. As the coinsurance rate increases, both
the physician’s test-ordering pattern and the equilib-
rium arrival rate converge to the social optimum.

3.2. Reimbursement Ceiling
Given that insurance coverage distorts the demand
curve for imaging services, one natural proposal would
be to introduce a reimbursement ceiling that sets the
maximum reimbursable amount for each service ses-
sion. This ceiling essentially restricts the maximum ser-
vice fee the physician charges, which we denote by
pmax. Define qmax ⇤ ⇡ + �(pmax � ⇡) and p̃ ⇤ [Qc + ↵µc �
2
p
!↵ � (1 � �)⇡]/(2�). The proposition that follows

characterizes the equilibrium.

Proposition 3. If pmax  p̃, then
(i) the physician chooses a service fee of p⇤ ⇤ pmax and a

service rate of µ⇤ ⇤ (Qc + ↵µc � qmax)/↵�
p
!/↵�

(ii) the induced arrival rate is �⇤ ⇤ µ⇤ �
p
!/↵�

(iii) the average waiting time is W ⇤ ⇤
p
↵/!.

When pmax is low, it becomes restricting such that
the physician would choose a service fee that is exactly
the same as pmax. This scenario essentially corresponds
to the setting in which the physician’s service fee is
capped by the insurance firm’s reimbursement ceiling.

The following corollary illustrates how the presence
of a reimbursement ceiling affects the physicians’ test-
ordering behavior.

Corollary 4. (i) The physician’s optimal service rate µ⇤
decreases in the copayment ⇡.

(ii) The physician’s optimal service rate µ⇤ decreases in
the coinsurance rate � if and only if the reimbursement ceil-
ing exceeds pmax  p̃.

The intuitions behind Corollary 4 are threefold. First,
ceteris paribus, when the copayment increases, the
physician compensates patients’ utility loss by order-
ing more tests. Second, when the reimbursement ceil-
ing pmax is high enough, the physician responds to a

decrease in the coinsurance rate � by ordering more
tests because patients are less sensitive to the service
fee. Third, when the insurance firm sets a low reim-
bursement ceiling pmax, the physician will set the ser-
vice fee at exactly pmax. A lower coinsurance rate �,
similar to a lower copayment ⇡, reduces patients’ fixed
out-of-pocket payment, and the physician can order
fewer tests without sacrificing patients’ net surplus.
Note from Proposition 3 that the expected waiting time
W ⇤ is independent of ⇡ and �; thus, the market-clearing
condition ⇡ + �(pmax � ⇡) ⇤ Q(µ⇤) � W ⇤ indicates that
an increase in ⇡ or � would need to be balanced by an
increase in the service quality (i.e., a decrease in the
service rate). Therefore, under a low reimbursement
ceiling, increasing the ratio of a patient’s out-of-pocket
expense to the total service fee leads to a higher testing
level, and vice versa. These findings are in line with
the empirical findings by Danzon (1982) that Medicaid
or Medicare patients—often with the lowest out-of-
pocket expenses—experience fewer tests than patients
with other insurance plans.

As in the baseline model, the social welfare gap is
convex increasing in the copayment ⇡, because both
the service rate µ⇤ and the equilibrium arrival rate �⇤
decrease in ⇡. With a high reimbursement ceiling, as
in the baseline model, the social welfare gap is con-
vex decreasing in �. With a low reimbursement ceiling,
however, Corollary 4 suggests both the arrival rate and
the service rate decrease in �, meaning the social wel-
fare gap is convex increasing in �.

The following corollary compares the market equi-
librium with the social optimum.

Corollary 5. If the reimbursement ceiling pmax  p̃, the
physician can order more or fewer tests than the socially effi-
cient level� that is, both µ⇤  µS and µ⇤ > µS are possible.

The above corollary provides the condition under
which overtesting occurs. Note from our analysis in
Section 2 that with a high reimbursement ceiling, the
physician always overtests. With a low reimbursement
ceiling, however, Corollary 5 states the physician can
either overtest or undertest, depending on whether
each patient’s out-of-pocket expense qmax is more than
(Qc +↵µc �2

p
↵!)/2. To give a numerical example, con-

sider µc ⇤ 8, Qc ⇤ 50, ! ⇤ 5, ↵ ⇤ 20, � ⇤ 0.2, and ⇡ ⇤ 50;
overtesting occurs as long as qmax exceeds $58. This is
because more tests compensate for a higher net pay-
ment, and vice versa. This result echoes the work of Yip
(1998), who empirically identifies a high usage of med-
ical procedures in the presence of low reimbursement
ceilings.

Corollary 5 also helps uncover the puzzle that moti-
vates our research. Recall from Section 1 that overtest-
ing occurs even under the exogenous pricing scenario,
that is, when the physician receives the same rev-
enue per patient visit regardless of the number of tests
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ordered. Consider a setting in which the physician’s
compensation per patient visit is fixed at p̄. The ser-
vice rate becomes the physician’s sole decision. This
problem is equivalent to the case in which the reim-
bursement ceiling is set low enough and the physi-
cian always sets the service fee at the maximum possi-
ble amount (see Proposition 3(ii)). In equilibrium, the
physician chooses a service rate of µ⇤ ⇤ [Qc + ↵µc �
⇡ � �(p̄ � ⇡)]/↵ �

p
!/↵, which can be either higher or

lower than the socially efficient service rate µS. In other
words, overtesting is still possible even under exoge-
nous pricing.

3.3. Misdiagnosis Concerns
In some scenarios, the physician bears the risk of mis-
diagnosis. For example, an inadequate number of tests
can indicate a normal patient is abnormal, exposing
patients to unnecessary treatments. Prior medical lit-
erature demonstrates the significance of misdiagnosis
concerns in their scope and impact. Studdert (2006)
find that 37% of malpractice claims do not involve
any real medical errors but nevertheless account for
13%–16% of the system’s total costs. In a study to reveal
physicians’ perceived risk of misdiagnosis, Carrier
et al. (2010) confirm high malpractice concerns among
physicians at all levels even when malpractice risks are
sufficiently low by objective measures. They also find
that common tort reforms do not ease such concerns.
Baicker et al. (2007) show that increased malpractice
risk drives higher consumption levels of healthcare ser-
vices, especially when they are discretionary.

We now incorporate a misdiagnosis cost in our
modeling of physician decision making. The misdi-
agnosis cost is a real cost incurred by the physician,
and essentially captures the nonfinancial aspect of the
physician’s expected costs due to potential malpractice
lawsuits. In practice, the physician can present tests in
the court as evidence for providing adequate medical
care in the case of a malpractice lawsuit. Thus, it is a
“burden of proof” that decreases in the intensity of test-
ing (i.e., increases in the chosen service rate). Kessler
and McClellan (2002) highlight the notion of “malprac-
tice pressure” and contend that such pressure can be
both financial and nonfinancial. The financial part usu-
ally does not factor into individual physicians’ decision
making and would be canceled out in the social welfare
equation, because the premium of malpractice insur-
ance is community rated, and rarely depends on mal-
practice claims. However, Kessler and McClellan (2002,
pp. 933–934) argue,

No insurance is possible against the unpleasant experi-
ences and considerable time commitment over months
or years. For example, in discovery, a physician may
be required to answer both written and oral questions
about her competence and judgment and to respond
to questions and other requests from lawyers for the

patient, for the malpractice insurer, and for the hospital
and its malpractice lawyer.

We model the physician’s misdiagnosis concerns as
a misdiagnosis cost function of the service rate, ✓(µ) :⇤
d · µ, where d is a constant denoting the marginal
increase in misdiagnosis concerns and can be inter-
preted as the parameter for “burden of proof.” The mis-
diagnosis cost increases in µ, to align with the obser-
vation that fewer tests cause the physician to be more
burdened by proof of due diligence in the event of a
lawsuit. When µ is very small, indicating the physician
orders a sufficiently large number of tests, the misdiag-
nosis cost approaches zero. Note that the real misdiag-
nosis risk has already been incorporated into the mod-
eling of service quality Q(µ); ✓(µ) is a burden incurred
by the physician only.

The physician’s decision consists of choosing the ser-
vice rate µ and the service fee p to maximize the utility
rate gm(µ, p) ⇤ [p � ✓(µ)] · �(µ, p). We characterize the
equilibrium in the following proposition.

Proposition 4. In the case with misdiagnosis concerns,
(i) the physician chooses the service rate µ⇤m ⇤ [Qc +

↵µc � (1 � �)⇡]/[2(↵ + �d)] and the service fee p⇤
m ⇤

(↵+ 2�d)[µ⇤m �
p
!/(↵+ �d)]/��

(ii) the induced arrival rate is �⇤m ⇤ µ⇤m �
p
!/(↵+ �d)�

(iii) the average waiting time is W ⇤
m ⇤

p
(↵+ �d)/!.

Proposition 4 indicates that as the physician’s “bur-
den of proof” (d) increases, the optimal service rate
decreases. In other words, a lower “burden of proof”
leads to a higher system capacity, which is aligned with
the empirical finding by Kessler and McClellan (2002,
p. 953), empirical finding that “policies that reduce
the time spent and the amount of conflict involved in
defending against a claim [can] reduce defensive prac-
tices substantially.”

The corollary below follows from Proposition 4.

Corollary 6. (i) With misdiagnosis concerns, the physi-
cian’s optimal service rate µ⇤m decreases in the copayment ⇡.

(ii) If d < ↵[(Qc +↵µc)/⇡�1]�1, the physician’s optimal
service rate µ⇤m increases in the coinsurance rate �� other-
wise, the physician’s optimal service rate µ⇤m decreases in the
coinsurance rate �.

An increase in the fixed per-visit charge increases the
requirement for service quality and so justifies more
tests. An increase in the coinsurance rate �, however,
can lead to either an increase or a reduction in the
optimal service rate µ⇤m , depending on the size of d.
When d is low, similar to the case without misdiagno-
sis concerns, an increase in the coinsurance rate leads
to a lower service fee and lower service quality (i.e., a
higher service rate). When d is high, due to the high
“burden of proof,” the physician no longer finds it
optimal to lower the intensity of testing. Rather, it is



Dai, Akan, and Tayur: Physicians’ Test-Ordering Behavior in Outpatient Services

Manufacturing & Service Operations Management, 2017, vol. 19, no. 1, pp. 99–113, © 2016 INFORMS 107

optimal to compensate patients’ higher expenses by
increasing the intensity of testing.

Next, we derive the condition under which the
physician would overtest. The social planner aims to
maximize the social welfare rate that can be repre-
sented as Um(µ, �)⇤ � · {Q(µ)�✓(µ)�!W(µ, �)}. The
next proposition characterizes the social optimum.

Proposition 5. With misdiagnosis concerns, in the social
optimum,

(i) the optimal service rate is µS
m ⇤ (Qc + ↵µc)/

(2(↵+ d));
(ii) the optimal arrival rate is �S

m ⇤ µS
m �

p
!/(↵+ d);

(iii) the expected waiting time is WS
m ⇤

p
(↵+ d)/!.

The following corollary is immediate from Proposi-
tions 4 and 5.

Corollary 7. If the copayment ⇡ is higher than (Qc + ↵µc)/
(1 + ↵/d), the physician orders more tests than the socially
efficient level, that is, µ⇤m < µS

m� otherwise, the physician
orders fewer tests than the socially efficient level.

Corollary 7 is rather counterintuitive: when physi-
cians suffer from “burden of proof” in the case of
potential inaccurate medical judgment, they may either
overtest or undertest (i.e., order either more or fewer
tests than the socially optimal level). The corollary is
especially surprising in view of Corollary 1, which
states the physician always overtests in the absence
of misdiagnosis concerns. To understand this result,
we recall from Proposition 5 that misdiagnosis con-
cerns increase the socially efficient consumption level.
The insurance coverage, on the other hand, enables
patients to pay less than the actual service fee. Specif-
ically, when the copayment is lower than (Qc + ↵µc)/
(1+ ↵/d), the physician can satisfy patients by ordering
fewer tests than the socially efficient level. When the
copayment exceeds (Qc +↵µc)/(1+↵/d), the insurance
coverage supplements the physician’s efforts to induce
demand. Furthermore, given Qc and µc , the threshold
decreases in the ratio of ↵ and d. Consider the spe-
cial case in which the physician’s misdiagnosis con-
cern is sufficiently low (i.e., d is small): the threshold
is then close to zero, meaning the physician invariably
overtests, which is consistent with Corollary 1.

Corollary 8. The average waiting time in the social opti-
mum is longer than in the market equilibrium, that is,
WS

m >W ⇤
m .

Corollary 8 may initially seem surprising in that even
when the physician orders more tests than in the social
optimum, patients still experience a shorter expected
waiting time. The underlying intuition is as follows.
We first recognize that one way to implement the social

optimum is to charge each patient a service fee coincid-
ing with the patient’s externality by joining the queue

pS
m ⇤ Q(µS

m)�!WS
m

⇤
(↵+ 2d)(Qc + ↵µc)

2(↵+ d) �
p
!(↵+ d). (2)

Under the market equilibrium, however, each patient’s
out-of-pocket expense is

⇡+ �(p⇤
m � ⇡) ⇤ (↵+ 2�d)(Qc + ↵µc)+ ↵⇡(1� �)

2(↵+ �d)
�
p
!(↵+ �d). (3)

Recall from Corollary 7 that when ⇡ > (Qc + ↵µc)/
(1+ ↵/d), the physician overtests. In the meantime,
comparing (2) and (3) gives that ⇡ + �(p⇤

m � ⇡) > pS
m ,

meaning each patient is subject to a high out-of-pocket
expense, which essentially induces a low arrival rate.
Consequently, the gap between the induced arrival rate
and the service rate is higher than under the social
optimum, leading to a lower expected waiting time.
This phenomenon has been observed in Hong Kong’s
healthcare system, where the average waiting times
across public and private hospitals are significantly dif-
ferent: the average waiting time for a public-hospital
physician is 74.7 days, whereas it is 24.3 days for a pri-
vate physician (Harvard Team 1999).

4. Patient Heterogeneity in
Diagnostic Precision

In this section, we consider the possibility that the
physician orders a different number of tests for patients
with different levels of diagnostic certainty. We start
with a description of our model, which is a generaliza-
tion of the baseline model in Section 2. We then char-
acterize the market equilibrium, the social optimum,
and the condition for overtesting, followed by a numer-
ical study. We close this section with a discussion of
follow-up visits using the model.

4.1. Modeling Patient Heterogeneity
Two types of patients, indexed by i ⇤ H, L, exist such
that the diagnostic precision ↵ can be either high (↵H)
or low (↵L), where ↵H > ↵L; that is, the patients are het-
erogeneous with respect to the rate ↵ at which the ser-
vice quality improves when the service rate decreases.
A given number of diagnostic tests result in higher
diagnostic certainty for a type H patient than for a
type L patient; that is, QH(µ) > QL(µ) for all µ. Both
types of patients have the same sensitivity to delay; that
is, their waiting costs ! are identical. The probability
that ↵ ⇤ ↵i is qi . Patients of class i arrive according to a
Poisson process with rate �i (i.e., class i patients arrive
according to a Poisson process with rate �i ⇤ qi · �),
where the total arrival rate of patients � is a decision
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variable. The total potential arrival rate ⇤ is, as in the
baseline model, assumed to be sufficiently large such
that full coverage is not possible.

Let µH , µL denote the service rates chosen for the two
types of patients. The physician tries to achieve a com-
mon level of diagnostic certainty q across both types of
patients. Hence, µH and µL are such that q ⇤ QH(µH)⇤
QL(µL); that is, µH ⇤ ↵L/↵H · µL + (1� ↵L/↵H) ·µc . For
a given quality level Q, the service rates are given by
µi(Q)⇤ µc +Qc/↵i �Q/↵i for i ⇤ H, L.

We assume the physician cannot discriminate among
patients by adopting different admission policies or
service fees based on the patients’ conditions (dictated
by the diagnostic precision). This assumption reflects
the case in which the physician admits the same frac-
tion of each patient type and thus controls the total
arrival rate �. Similar to the analysis of the base-case
model in Section 2, we characterize and compare the
optimal service allocations under various optimality
criteria.

The physician chooses the service fee p, the total
arrival rate �, the service-rate vector µ ⇤ (µH , µL), and
the scheduling policy � (which is now a decision vari-
able). For simplicity, we assume that a first-come, first-
served policy is obeyed among customers of the same
class; the results extend to any nonanticipating and
nonpreemptive regime because they all result in the
same mean queueing times, and the patients’ arrival
decisions depend only on the mean time in the system.
Let W�

i (�,µ) denote the operationally feasible steady-
state expected waiting time in the system for class i
patients under an admissible scheduling rule �. In the
market equilibrium, each patient chooses an individu-
ally optimal queue-joining probability. We assume the
patients do not know the diagnostic certainty of their
condition ex ante. Therefore, both types of patients
choose the same probability of joining the service, and
the following market-clearing condition is satisfied in
equilibrium:

Qi(µi) ⇤ ⇡+ �(p � ⇡)+!
X

i⇤H, L
qiW

�
i (�,µ)

for i ⇤ H, L. (4)

4.2. Equilibrium Characterization
We now find the optimal scheduling policy � 2� from
the physician’s and social planner’s perspectives. For
a given total arrival rate � and service-rate vector µ ⇤
(µH , µL), the revenue rate and the expected net benefit
are maximized whenever the system’s expected delay-
cost rate !P

i⇤H, L qiW
�
i (�,µ) is minimized. Therefore,

we take minimizing the delay cost as our optimal-
ity criterion subject to operational feasibility. Then,
the optimal scheduling policy to be followed is the
shortest expected processing time policy, which gives
strict (nonpreemptive) priority to the patient classes in

decreasing order of their diagnostic precision ↵i (see
Online Appendix A for details). The resulting waiting
time is given by

WH(�,µ) ⇤
P

k⇤H, L �k/µ2
k

(1� �L/µL)(1� �H/µH)
+

1
µH

and

WL(�,µ) ⇤
P

k⇤H, L �k/µ2
k

(1� �H/µH)(1�
P

k⇤H,L �k/µk)
+

1
µL
.

4.2.1. Market Equilibrium. The physician’s problem is
to choose the total arrival rate �, service-rate vector
µ⇤ (µH , µL), and the price p to

max
�, µH , µL , p

g(�,µ)⇤ p�

s.t. Qi(µi)⇤ ⇡+ �(p � ⇡)
+![qHWH(�,µ)+ qLWL(�,µ)],

�H/µH + �L/µL < 1,
Q(µH)⇤ Q(µL),

where �i ⇤ qi�.
Note that we can rewrite the expected waiting time

explicitly as follows:

W(�,µ) ⇤
✓

qH/µ2
H + qL/µ2

L

1/�� qH/µH

◆

·

qH +

qL

1� �(qH/µH + qL/µL)

�

+
qH

µH
+

qL

µL
,

which implies W(�,µ) is strictly increasing in the total
arrival rate �. Therefore, for each price level p, the
market-clearing condition uniquely defines an aggre-
gate arrival rate �(µ) as a function of the service rates.
Substituting for p from the market-clearing condition,
the physician’s objective function can equivalently be
stated as choosing �, µ to maximize

g(�,µ) ⇤ � ·
�
Qi(µi)�![qHWH(�,µ)+ qLWH(�,µ)]

� ⇡(1� �)
 
.

4.2.2. Social Optimum and Overtesting Condition.
The objective for the social planner is to maximize the
expected net benefit received per unit of time by the
collective of all patients:

max
�, µH , µL

U(�,µ)⇤ �HQH(µH)+ �LQH(µL)
�!�HWH(�,µ)�!�LWL(�,µ)

st. �H/µH + �L/µL < 1,
Q(µH)⇤ Q(µL),

where �i ⇤ qi�.
The following proposition summarizes the effect of

diagnostic precision heterogeneity on the physician’s
overtesting behavior.
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Proposition 6. When service-rate differentiation is allowed
under diagnostic precision heterogeneity, the physician
orders more tests for both patient classes �µ⇤i  µS

i for i ⇤
H, L� and admits fewer patients in total ��⇤  �S� in the
market equilibrium than in the social optimum. Furthermore,
when ! is sufficiently large, the average waiting time is
lower in the market equilibrium than in the social optimum
�W ⇤  WS�.

Proposition 6 states that with patient heterogene-
ity in diagnostic precision, largely consistent with the
results from the baseline model, that is, Propositions 1
and 2 and Corollary 1(i)–(ii), the physician would
always overtest. In addition, the equilibrium arrival
rate would be lower than under the social equilibrium.
Different from the baseline model, however, the physi-
cian would account for patient heterogeneity by choos-
ing the service rate in such a way that the average wait-
ing time may be lower than in the social optimum. (See
Online Appendix A for the exact characterization of a
sufficient condition for W ⇤  WS to hold.) This result is
similar to the one stated in Corollary 8.

4.3. Numerical Study
We conduct numerical experiments to provide insights
into the effects of interpatient heterogeneity and the
patient mix on the equilibrium behavior of agents.

We first study the effect of interpatient heterogene-
ity. Let �↵ ⇤ ↵H � ↵L denote the range of the diag-
nostic precision of the high and low patient classes.
We use the following parameters: µc ⇤ 0.8, Qc ⇤ 5,
! ⇤ 0.5, ⇡ ⇤ 10, � ⇤ 0.2, and qH ⇤ qL ⇤ 0.5. We maintain
the average diagnostic precision (↵H + ↵L)/2 at 20 and
vary �↵, which allows us to examine the effect of inter-
patient heterogeneity; we include the case in which
↵H ⇤ 20.01 to demonstrate the discontinuity as a result
of the transition from a homogeneous patient popu-
lation (i.e., ↵H ⇤ ↵L) to a heterogeneous one. Table 1
shows that as �↵ increases, in both the market equilib-
rium and social optimum, (1) the queueing system has
a higher service-time variability in that the service rate
for type H patients increases, whereas the service rate
for the type L patients decreases; (2) the optimal service
quality decreases; and (3) the total expected waiting

Table 1. Effect of Patient Heterogeneity in Diagnostic Precision (qH ⇤ qL ⇤ 0.5)

Market equilibrium Social optimum

↵H ↵L µ⇤H µ⇤L Q⇤ W ⇤
H W ⇤

L W ⇤ �⇤ µS
H µS

L QS WS
H WS

L WS �S

20 20 0.3250 0.3250 14.50 6.324 6.324 6.324 0.1669 0.5250 0.5250 10.50 6.324 6.324 6.324 0.3669
20.01 19.99 0.3252 0.3247 14.50 5.200 7.449 6.3249 0.1669 0.5251 0.5248 10.50 3.950 8.699 6.325 0.3669
21 19 0.3504 0.3030 14.44 4.957 7.654 6.306 0.1680 0.5381 0.5106 10.50 3.891 8.757 6.324 0.3673
22 18 0.3809 0.2878 14.22 4.676 7.693 6.184 0.1685 0.5542 0.4995 10.41 3.814 8.753 6.283 0.3690
23 17 0.4137 0.2774 13.88 4.395 7.596 5.996 0.1675 0.5724 0.4921 10.24 3.725 8.688 6.207 0.3719
24 16 0.4465 0.2697 13.48 4.131 7.409 5.770 0.1645 0.5919 0.4879 9.993 3.630 8.569 6.100 0.3757
25 15 0.4780 0.2633 13.05 3.884 7.166 5.525 0.1589 0.6121 0.4868 9.698 3.533 8.406 5.969 0.3801

time decreases. The reduction in quality comes from
the fact that as interpatient heterogeneity increases,
providing the same level of service quality requires
a higher level of variability. Interestingly, the effect
of diagnostic precision heterogeneity on the expected
waiting time varies depending on patient type: in
both the market equilibrium and the social optimum,
as�↵ increases, type H patients’ expected waiting time
decreases, whereas type L patients’ expected waiting
time first increases and then decreases.

Next, we study the effect of patient mix. We use the
same set of parameters as above except that we vary
(qH , qL) to examine the effect of the patient mix. In each
generated scenario, we adjust the values of (↵H , ↵L)
in such a way that the average diagnostic precision
(↵H + ↵L)/2 is maintained at 20. Tables 2 and 3 provide
the results for the cases in which (qH , qL) ⇤ (0.3, 0.7)
and (qH , qL) ⇤ (0.7, 0.3), respectively. One observation
from comparing these results is that as the proportion
of type H patients increases (i.e., from q ⇤ 0.3 in Table 2
to qH ⇤ 0.5 in Table 1 and then to qH ⇤ 0.7 in Table 3),
the service rates for both types increase, whereas the
service quality decreases in both the market equilib-
rium and the social optimum. In addition, both types
of patients experience a shorter expected waiting time.

4.4. Discussion on Follow-Up Tests
We now consider a variant of the above model with
patient heterogeneity. There are two types of patients
indexed by i ⇤ H, L, each accounting for qi of the popu-
lation and with different levels of diagnostic precision:
high (↵H) and low (↵L). However, different from the
above model, a proportion of the patients’ types are
not revealed until some preliminary tests have been
ordered; we refer to these patients as type u patients.
The physician provides a uniform service quality and
uses two service rates: µH , corresponding to a “basic
package” of tests, for all patients, and µL, correspond-
ing to an “advanced package” of tests, for type L
patients only. Each type L patient must complete the
basic package before proceeding to the advanced pack-
age. Once a basic package is completed, all the type u
patients’ types are revealed: those who are type H do
not need further tests, whereas those who are type L
need to complete the advanced package.
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Table 2. Effect of Patient Heterogeneity in Diagnostic Precision (qH ⇤ 0.3, qL ⇤ 0.7)

Market equilibrium Social optimum

↵H ↵L µ⇤H µ⇤L Q⇤ W ⇤
H W ⇤

L W ⇤ �⇤ µS
H µS

L QS WS
H WS

L WS �S

20 20 0.3250 0.3250 14.50 6.324 6.324 6.324 0.1669 0.5250 0.5250 10.50 6.324 6.324 6.324 0.3669
20.01 19.996 0.3252 0.3249 14.50 4.942 6.917 6.325 0.1669 0.5251 0.5249 10.50 3.588 7.497 6.325 0.3669
21 19.57 0.3486 0.3156 14.48 4.727 7.002 6.320 0.1674 0.5380 0.5188 10.50 3.537 7.519 6.324 0.3670
22 19.14 0.3727 0.3089 14.40 4.523 7.030 6.278 0.1676 0.5514 0.5142 10.47 3.484 7.520 6.309 0.3676
23 18.71 0.3964 0.3040 14.28 4.341 7.017 6.214 0.1674 0.5648 0.5110 10.41 3.430 7.503 6.281 0.3686
24 18.71 0.4192 0.3002 14.14 4.179 6.977 6.137 0.1667 0.5782 0.5088 10.32 3.378 7.472 6.243 0.3698
25 17.86 0.4408 0.2970 13.98 4.036 6.918 6.053 0.1654 0.5912 0.5076 10.22 3.327 7.428 6.198 0.3713

Table 3. Effect of Patient Heterogeneity in Diagnostic Precision (qH ⇤ 0.7, qL ⇤ 0.3)

Market equilibrium Social optimum

↵H ↵L µ⇤H µ⇤L Q⇤ W ⇤
H W ⇤

L W ⇤ �⇤ µS
H µS

L QS WS
H WS

L WS �S

20 20 0.3250 0.3250 14.50 6.324 6.324 6.324 0.1669 0.5250 0.5250 10.50 6.324 6.324 6.324 0.3669
20.01 19.98 0.3252 0.3244 14.50 5.542 8.154 6.325 0.1669 0.5251 0.5246 10.50 4.510 10.560 6.325 0.3669
21 17.67 0.3572 0.2736 14.30 5.205 8.640 6.236 0.1693 0.5396 0.4904 10.47 4.430 10.72 6.318 0.3684
22 15.33 0.4118 0.2431 13.54 4.622 8.483 5.780 0.1696 0.5656 0.4637 10.16 4.269 10.655 6.185 0.3744
23 13 0.4753 0.2256 12.47 3.966 7.787 5.113 0.1587 0.6024 0.4505 9.544 4.040 10.28 5.912 0.3856
24 10.67 0.5372 0.2086 11.31 3.256 6.917 4.354 0.1252 0.6457 0.4528 8.703 3.774 9.624 5.530 0.4007
25 8.33 0.6027 0.2081 9.933 2.661 6.161 3.711 0.1000 0.6907 0.4720 7.733 3.497 8.748 5.072 0.4190

The requirement for uniform service quality (de-
noted by Q) gives

Q ⇤ Qc + ↵H(µc � µH)

⇤ Qc + ↵L

✓
µc �

1
1/µH + 1/µL

◆
, (5)

which gives

µH(Q)⇤ Qc + ↵Hµc �Q
↵H

and

µL(Q)⇤ (Qc + ↵Hµc �Q)(Qc + ↵Lµc �Q)
(Q �Qc)(↵H � ↵L)

.

We can verify µH(Q) decreases in Q. For µL(Q) to
decrease in Q, we would need Q < Qc +

p
↵H↵Lµc ,

which is satisfied because we have from (5) that Q <
Qc +min{↵H , ↵L}µc .

To ensure µL(Q) < µH(Q), we would need ↵H/↵L >
2+↵Lµc/(Q�Qc). Under the assumption, the queueing
system with follow-up tests may be viewed as a queue-
ing system with two classes of customers with service
rates µH(Q) and µL(Q), respectively, where µL(Q) <
µH(Q) and µ0i(Q) < 0 for i ⇤ H, L. The proportions of
these two classes of patients are q0

H ⇤ 1/(1+ qL) and q0
L ⇤

qL/(1+ qL), respectively. Under the optimal scheduling
rule, the second class of customers has a higher priority
in the queueing discipline. We can then show that Lem-
mas A2–A6 (see the online appendices) remain valid
and replicate the result in Proposition 6.

5. Disparities in Health Insurance
Coverage

We have so far focused on the case where there is only
one type of patient, with a copayment of ⇡ and a coin-
surance rate of �. We now extend our baseline model
by allowing a proportion � of the population to have a
new type of insurance plan characterized by a copay-
ment of ⇡0 and a coinsurance rate of �0 that satisfy the
following: (1) �0 � �, meaning the new type of patients’
coinsurance rate is no lower than that of the original
type; and (2) (1 � �0)⇡0 � (1 � �)⇡, meaning the new
type of patients’ residual copayment—the copayment
less the proportion covered through coinsurance—is
no lower than that of the original type. Note that one
of the above two inequalities must be strict; otherwise,
the new type would be exactly the same as the orig-
inal type. Thus, for any service charge, the new type
has a higher out-of-pocket amount. As in the case with
patient heterogeneity in diagnostic precision (see Sec-
tion 4), the physician attempts to achieve a common
level of diagnostic certainty across patients and thus
chooses a uniform service rate.

The following proposition provides the optimal ser-
vice rate. For simplicity of exposition, we define µ̂ ⇤

[Qc + ↵µc � (1 � �)⇡]/(2↵) as the optimal service rate
when all the patients are of the original type, and µ̂0 ⇤
[Qc + ↵µc � (1� �0)⇡0]/(2↵) as the optimal service rate
when all the patients are of the new type; it is clear that
µ̂0 < µ̂. We focus on the setting in which⇤> µ̂0 �

p
!/↵;
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that is, the total potential arrival rate is large enough,
so that not all patients will be covered in equilibrium.

Proposition 7. Under two types of insurance coverage, the
optimal service rate is

µ⇤ ⇤

(
µ̂ if 0 < µ̂�

p
!/↵  (1� �)⇤,

µ̂0 otherwise,

which is always lower than the socially optimal service rate
µSO ⇤ (Qc + ↵µc)/(2↵).

If �, the proportion of patients with higher out-of-
pocket expenses, is below 1/2, an increased � indicates
that the patients’ health insurance coverage becomes
more heterogeneous. From Proposition 7, we observe
that as � increases, the physician is more likely to
choose a lower service rate, which further increases
the efficiency gap between the market equilibrium and
the social optimum. Broadly speaking, this result is
aligned with the industry insight from the outpatient
setting that the shift to a patient population with more
diversified insurance coverage (reflected in more insur-
ance types accepted by healthcare providers) requires
efforts in expanding capacity (Levine et al. 2013).

We can generalize the above analysis to the scenario
with N � 2 types of patients, and we relegate the details
to Online Appendix A.

6. Implications for Policy Makers
We highlight implications from our results to policy
makers.

First, the insurance structure (as opposed to the
share of patient cost sharing) drives the intensity of
testing. In our baseline model, we show that the copay-
ment and the coinsurance components have differen-
tial effects on testing decisions: the intensity of testing
increases in the copayment but decreases in the coin-
surance rate (Corollary 2). The effect of the copayment
and the coinsurance components can also be similar in
certain cases; for example, in the presence of a price-
setting reimbursement ceiling (Corollary 4) or signif-
icant misdiagnosis concerns (Corollary 7), increasing
the copayment or the coinsurance rate leads to higher
testing intensity.

Second, overtesting is a complex phenomenon, and a
comprehensive understanding of the underlying finan-
cial, operational, and clinical drives is essential before
embarking on any radical changes in public policy.
Simple changes in the payment scheme, such as impos-
ing a reimbursement ceiling or eliminating insurance
coverage all at once, may not work as intended. In
addition, we show that overtesting does not occur in
the absence of a positive copayment (typically charged
for physician visits), but eliminating copayments alto-
gether may lead to undertesting, as suggested by

Corollary 5 (the case with a reimbursement ceiling)
and Corollary 6 (the case with misdiagnosis concerns).

Third, physicians’ misdiagnosis concerns lead to
overtesting only when bundled together with a cer-
tain incentive environment. Corollary 7 indicates that
addressing the issue of overtesting (and undertest-
ing) requires incorporating physicians’ misdiagnosis
concerns as one factor in designing the insurance
structure.

Fourth, in healthcare settings, it is often the case that
the physician solely decides on the service quality (i.e.,
the level of diagnostic accuracy), that the physician
wishes to uniformly deliver to all customers. Subse-
quently, because of the inherent uncertainty in the pro-
cess, the service rate varies across patients. We show
that in serving patients of different levels of diagnostic
precision, overtesting nevertheless occurs when com-
pared to the social optimum (Proposition 6). Further-
more, as the patient mix becomes more diverse, to pro-
vide the same service quality entails longer waiting
times because of increased system variability; thus, as
our numerical study demonstrates, the optimal service
quality decreases.

Last, when the patient population is characterized
by an increased number of insurance types, we find the
service rate tends to be lower and the gap between the
market equilibrium and the social optimum widens,
because a strictly positive surplus is required for cer-
tain patients (Proposition 7).

7. Concluding Remarks
This paper was initially motivated by an observational
study in an ocular imaging setting. In the case of
laboratory testing, as one would expect, many tests
may be processed in parallel, and thus test order-
ing has a limited effect on patients’ waiting times. In
an imaging-testing environment, quite differently, the
tests require patient presence and thus directly drive
patients’ waiting times. Thus, imaging testing provides
a compelling venue for us to examine the effect of the
physician’s clinical decision making on a healthcare
organization’s operational, financial, as well as clinical
performance. Moreover, our analysis and results may
provide insights into physicians’ decisions concerning
other services with similar trade-offs.

To the best of our knowledge, this work is the
first to analytically investigate financial (insurance and
reimbursement), operational (system throughput and
congestion), and clinical (service quality) incentives
behind physicians’ test-ordering behavior in an out-
patient setting. Our approach has a similar spirit
as expressed in a commentary by Eisenberg et al.
(1987, p. 805):

We herein assume that physicians respond to finan-
cial incentives provided by different payment schemes
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and to changes in those incentives. This is not to say
that financial incentives are of primary importance to
physicians. The primary goal of physicians is to ensure
their patients’ health . . . . Substantial variability among
physicians in test ordering suggests, however, that clin-
ical indications for diagnostic tests are rarely absolute
and that other factors may influence physicians’ order-
ing decisions. Some reasons for variation reflect the
physician’s role as the patient’s agent and advocate.
Patients may want tests done, and their desire for test-
ing may be influenced by insurance coverage. Physicians
not only respond to their patients’ wishes, but also act
on their patients’ behalf by considering convenience and
out-of-pocket costs.

Our model reveals that insurance coverage is a key
driver of overtesting, and the copayment and the coin-
surance rate affect the equilibrium service rate in oppo-
site ways: with a higher copayment, the physician
orders more tests; with a higher coinsurance rate,
the physician orders fewer tests. We then show that
setting a reimbursement ceiling alone cannot elimi-
nate overtesting, and, surprisingly, overtesting can still
occur even when such a ceiling is low. Furthermore,
when physicians are concerned about inaccurate diag-
nosis, we show that both overtesting and undertesting
are possible outcomes, and the waiting time in equilib-
rium is shorter than the socially efficient level. We also
consider two extensions of our baseline model: one on
patient heterogeneity in diagnostic precision, and the
other on disparities in health insurance coverage.
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