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Abstract Artificial intelligence (AI) is poised to revolutionize healthcare delivery in the United
States and around the world. As AI becomes an integral part of the healthcare workflow,
it will change the way we model and analyze healthcare delivery and upend the paradigm
that has dictated how operations research and management science researchers interact
with healthcare practitioners. In this tutorial, we demonstrate how the integration of AI
into the healthcare workflow will radically transform healthcare delivery and, at the same
time, require a new set of models to guide rapidly changing healthcare practices, measure
productivity gains in the industry, and reduce disparities in access to care. These models
should be based on a comprehensive understanding of the variables that influence various
stakeholders, including patients, providers, payers, bioethicists, regulatory bodies, and in-
vestors. Although healthcare AI promises to learn and adapt based on user interactions
and data, the development, validation, and approval processes require the creation of
new models that generate useful insights. Finally, we discuss barriers and opportunities
related to regulatory and reimbursement issues for AI in healthcare.
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1. Introduction
The saga of artificial intelligence (AI), since its inception in 1956, has been a thrilling odyssey
of transformation, with the term itself taking on new meanings as it is associated with an
ever-evolving array of techniques and capabilities. In its early days, AI research was domi-
nated by “symbolic AI” (also known as “rule-based AI”), which focused on identifying, formal-
izing, and codifying the logic and rules underlying human intelligence (Simon [74]). Over
time, amid fierce competition among various disciplines and the evolution of computational
infrastructure and algorithms, “learning-based AI” (also known as “connectionist AI”), which
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focuses on recognizing patterns from data that capture human thought and action, has
become the mainstream school of thought. In particular, deep learning, using artificial neural
networks, has emerged as the workhorse of AI, although the reason for its “unreasonable
effectiveness” remains more or less a mystery (Sejnowski [72]).

One thing remains constant: Medicine has always been one of the most prominent areas of
AI application (Kavasidis et al. [49]), inspiring AI and medical researchers to develop new
techniques in the quest for higher quality, lower cost, more accessible, more equitable, and
more personalized healthcare. It is no exaggeration to say that the field of medicine has played
a significant, perhaps even pivotal, role in shaping the trajectory of AI as we know it today.

In this tutorial, we provide not only an overview of AI applications in medicine, but also a
preview of what we believe will be one of the most important changes in the healthcare
industry—the increasingly widespread integration of AI into healthcare workflows, which will
create new opportunities in healthcare delivery and require new models, new thinking, and
new insights. We will use the case of AI-enabled medical devices as a focal point to guide our
discussions, with a discussion of other types of medical AI toward the end of this tutorial.

1.1. A Brief History of AI and Medicine
AI and medicine have a surprisingly intimate relationship. Neural networks, the key building
blocks of modern AI, were first developed by McCulloch and Pitts [60], inspired by the workings
of the human brain, 12years before the term “artificial intelligence” was coined by a group of
computer scientists who met in an eight-week-long conference at Dartmouth College in 1956.

The Dartmouth meeting marked the beginning of the first AI boom, which lasted nearly two
decades. During this period, the dominant paradigm of AI was symbolic AI (or “rule-based AI”).
That is, the focus was on logic: identifying a set of conditional rules (coded using “IF-THEN-
ELSE” clauses) to perform intellectual functions typically performed by humans. For example,
Warner et al. [87] use the Bayes theorem to develop a set of rules for diagnosing congenital heart
disease. The end result of their exercise is a checklist of symptoms, so that as the physician identi-
fies different sets of symptoms, the model can update its prediction of whether the patient has a
particular disease from a list of diseases. Beginning in 1974, an “AI winter” hit the field, mainly
due to the lack of progress in developing practically usable AI systems with tangible results. By
the early 1980 s, many AI projects had been canceled or postponed (Hendler [44]).

The 1980 s saw a second AI boom, characterized by various “expert systems” that
attempted to represent human knowledge in a multidisciplinary way: linguists, mathemati-
cians, philosophers, psychologists, and economists, as well as domain experts, worked along-
side computer scientists and engineers to develop specialized expert systems. The focus was
narrower and less ambitious than what was envisioned during the initial AI boom. Most of
these expert systems remain symbolic (i.e., rule-based), despite advances in learning algo-
rithms. For instance, the MYCIN system uses about 60 distinct rules to pinpoint bacteria
responsible for severe infections. It does this by posing a series of yes/no questions to physi-
cians, which in turn generates a list of potential bacteria that could be causing the patient’s
symptoms (Swartout [79]). We refer the reader to Lundsgaarde [59] for a review of notable
medical expert systems from the second AI boom. However, the second AI boom came to an
abrupt end in 1987 when expert systems failed to deliver tangible results in the real world
(Gill [37]). This setback was compounded by a change in U.S. national funding priorities (Gia-
caglia [35]), resulting in the onset of the second AI winter, which lasted until the mid-1990 s.
Such systems were also hampered by their reliance on what essentially amounted to a “game
of noisy telephone”: The patient conveys their symptoms through speech, which the physician
then interprets and types into a teletype for the AI to make decisions based on. The communi-
cation can be noisy at each step, leading to potential errors.

The end of the second AI winter is followed by a period of normalization of AI that can be
called the “AI spring.” This was a period in which important algorithmic and hardware
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breakthroughs were made, but it was not until around 2011 that it became apparent that AI
was entering another, still ongoing, boom, at least partially due not so much to more sophisti-
cated algorithms, but the availability of low-cost sensors across medicine, allowing easy access
to high fidelity data.

The following developments are thought to play major roles in the current AI boom, which
some refer to as the first “AI summer”:

(1) Faster, widespread use of faster CPUs and GPUs, allowing more sophisticated, multi-
layer neural networks—deep learning revolution—allowing higher accuracy and generaliza-
tion (LeCun et al. [54], Sejnowski [72]).

(2) Reinforcement learning (RL), a type of machine learning in which an agent learns to
make decisions by interacting with its environment and receiving feedback in the form of
rewards or punishments, is gaining popularity due to the success of projects such as
AlphaGo Zero, a version of DeepMind’s AlphaGo software that taught itself to play Go
from scratch without human input, and others (Fu et al. [33]).

(3) Generative AI, a branch of AI, focused on devising models that can generate creative
content such as text, images, videos, or music based on learned patterns, is expanding AI’s
horizons, with significant implementations like DALL·E 2, an advanced iteration of the
DALL·E model known for creating original images from textual descriptions, ChatGPT, a
powerful conversational AI model capable of generating human-like text, and GPT-4, the
latest version of the large-scale transformer-based language model trained by OpenAI,
known for its improved comprehension and generation capabilities.

(4) AI is increasingly embedded in workflows, not just confined to startups and AI labs
(Agrawal et al. [5]). In manufacturing, AI-powered robots and algorithms are being used by
established manufacturers and start-ups alike to increase productivity on production lines
and predict maintenance needs to prevent downtime (Wuest et al. [90]). In healthcare, this
trend has been enabled by (1) availability of high-quality digital data in medicine through
widespread use of low-cost CMOS sensors and the like, replacing mostly noisy, primarily
textual data in many areas (Abràmoff et al. [1]); and (2) ethical frameworks for AI, includ-
ing metrics for those ethics, so that AI systems can be optimized to them, allowing all
healthcare stakeholders (patients, physicians, payers, other providers, regulators, ethicists,
AI creators, and investors) to support subsequent ethical regulation and reimbursement
(Char et al. [20], Abràmoff et al. [2, 3], Youssef et al. [94]).

Notably, in the field of healthcare, which has led to the legal use of autonomous AI for patient
care (i.e., a computer making a medical decision), the ethical framework and subsequent regula-
tion and reimbursement have played central roles. Compare this to, for example, automotive
AI, where the same deep learning, reinforcement learning, and generative AI technologies are
used, but there is no ubiquitous autonomous car (Insurance Institute for Highway Safety [48]).

All of these developments have had a significant impact on healthcare. In particular, com-
puter vision has arguably been the most influential AI development, resulting in the vast
majority of the more than 500 AI-enabled devices approved for clinical use by the U.S. Food
and Drug Administration (FDA) as of July 2022 (FDA [32]). The second development, RL
and generative AI, has yet to see large-scale real-world applications in medicine (Coronato
et al. [22]). The third development, generative AI, has sparked quite a lot of enthusiasm
among the medical community (Ayers et al. [9]), leading to a number of proposals, such as a
series of “foundation models” of “generalist medical artificial intelligence” by Moor et al. [62].
The topic of this tutorial is the fourth development—how to integrate AI into everyday
healthcare workflows and make a difference in healthcare delivery.

1.2. Diabetic Retinopathy: A Case of Using AI in Healthcare Delivery
Diabetic retinopathy, a sight-threatening disease, is a serious public health issue in the United
States (and much of the rest of the world). Thirty-seven million people in the United States,
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or about 11% of the population, have diabetes; Black adults have a 60% higher risk of being
diagnosed with diabetes than white adults (HHS [46]). Diabetic retinopathy is a common
complication of diabetes (both type 1 and type 2): Between one in three and one in two
patients with diabetes will develop retinopathy in their lifetime (Graue-Hernandez et al. [39]).

Diabetic retinopathy is the leading cause of blindness among working-age adults in the
United States (CDC [17]). Fortunately, early detection and treatment can reduce the risk of
blindness by 95% (National Eye Institute [64]). Therefore, early detection is the key to prevent-
ing vision loss from retinopathy. Yet only 15% of diabetic patients in the United States receive
the recommended annual screening (Benoit et al. [12], Channa et al. [19]). The screening rate is
particularly low among minority patients and those without insurance (Eppley et al. [30]).

A major reason for the low screening rate in the United States is the inconvenience associ-
ated with scheduling an appointment with an ophthalmologist or optometrist, which we will
refer to as an “eye care professional” for the remainder of this tutorial. The procedure can be
costly for patients, especially those who are uninsured or underinsured, and the dilated eye
exam can take two hours. Because an estimated 82% of diabetic patients who are not screened
for retinopathy visit a primary care physician annually, using AI to provide screening in pri-
mary care settings is an important opportunity to improve retinopathy screening rates among
diabetic patients (Gibson [36]).

This is exactly what LumineticsCore (previously known as IDx-DR, as illustrated in Figure
1), the first FDA-cleared and Centers for Medicare & Medicaid Services (CMS) reimbursed
autonomous AI-enabled diagnostic device, aims to do. Developed by Digital Diagnostics, it
uses a hybrid biomarker-based deep learning computer vision algorithm that integrates multi-
ple statistically partially dependent deep learning detectors. The device is designed to operate
in a primary care setting by personnel with a high school diploma, eliminating the need for
expert human interpretation or data entry. LumineticsCore identifies diabetic eye disease
with sensitivity and specificity values exceeding 90%, and the process can be completed
within a short time frame (Abràmoff et al. [1]). The term “autonomous” applies as the device
does not require human interpretation of images and the medical decision making is algorith-
mic, aligning with the AI policy of the American Medical Association that places liability
with the AI developer (American Medical Association [7]). Moreover, the device can be oper-
ated by any member of the clinical staff (with a high school diploma or higher) after a four-
hour training program, indicating an upskilling opportunity in a field experiencing a shortage
of medical professionals, especially in rural and inner-city regions (Butkus et al. [16]).

Figure 1. (Color online) LumineticsCore (previously IDx-Dr), the first autonomous AI-enabled diagnos-
tic device approved by the FDA for clinical use.
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Several studies have demonstrated the beneficial impact on patient outcomes of Luminetic-
sCore. For example, Wolf et al. [88] found that using the device in a primary care setting
increased patient adherence from 49% to 95%. In a more recent investigation, Wolf and col-
leagues conducted a randomized controlled trial to determine if point-of-care AI screening
improved screening rates compared with standard in-person eye exams by eye care profes-
sionals. They found that the group offered the AI screening option had a screening rate of
100%, whereas the group referred to an eye care professional for screening had a screening
rate of 22%. These results offer hope for improving retinopathy screening rates by offering the
AI screening option in a primary care setting. Another recent study, by Leong et al. [57],
shows that the use of autonomous AI for retinopathy screening improves health equity for
high-risk patients by facilitating evaluation of such patients before the occurrence of visual
damage.

The case of LumineticsCore has several notable features with broader implications for
AI-enabled healthcare.

First, LumineticsCore is an FDA-cleared medical device, the type of “tangible AI” that is
certified for clinical use as medical device. As of July 2022, the FDA has approved 521
AI-enhanced medical devices across 15 medical specialties, a significant portion of which were
developed using deep learning computer vision algorithms and are intended for medical diag-
nosis and screening (FDA [32]). The number of FDA-approved AI devices is expected to
increase dramatically in the coming years, so we can expect that the experience of integrating
LumineticsCore into medical practice will provide valuable lessons for using AI to bridge gaps
in access to care.

Second, a shortage of healthcare workers is often the primary reason for a lack of access to
essential care, especially preventive care for patients with chronic conditions. The gap
between supply and demand is expected to widen in the coming decades in both developed
and developing countries. Well-validated AI solutions offer an important approach to expand-
ing access to healthcare.

Third, the cost structure of AI devices differs from that of traditional healthcare. The vari-
able costs of using AI for screening tend to be low, and patients are often expected to pay little
or no out-of-pocket costs (Abràmoff et al. [2]). This type of cost structure is particularly
attractive because it has economies of scale and lends itself to large-scale deployments for
public health interventions, such as disease screening. Singapore, for example, has initiated
several national AI-based screening programs for diabetes-related eye disease (Ta et al. [80]).
An evaluation of a semiautomated system in Singapore estimated annual savings of $15 mil-
lion by 2050 (Xie et al. [91]).

1.3. AI-Augmented Healthcare: What Is Old and What Is New
In their seminal book Prediction Machines: The Simple Economics of Artificial Intelligence,
Agrawal et al. [5] pioneer the view that AI systems can be viewed as “prediction machines”
that have greatly reduced the cost of prediction, which is essential in human decision
making—consisting of the prediction and judgment phases. This view essentially treats AI as
an informational tool to greatly reduce the time and cost of making predictions before making
decisions. In other words, when we think about the role of AI in our workflows, the focus
should be on how AI generates predictions in an affordable way. In the case of healthcare, the
lower cost of generating predictions—for example, about patients’ disease states—means that
care can be provided earlier in a patient’s journey, and even prevent healthy individuals from
becoming patients in the first place. In other words, medical AI can be seen as a productivity-
enhancing device, as productivity loss is key issue in access and cost concerns (Helmchen et al.
[43]).

The field of operations management has extensively studied information flow, particularly
in the cases of supply chain management (Gavirneni et al. [34], Lee et al. [56]) and service
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operations (Guo and Zipkin [40], Ibrahim et al. [47]). In fact, managing the flow of informa-
tion is a central issue in the field of operations management, which focuses its mission on
matching supply and demand. In this sense, the introduction of AI systems into day-to-day
healthcare workflows is not new from a modeling perspective, as it falls within the domain of
operations management researchers. However, it expands the scope of operations manage-
ment in several ways.

First, in contrast to the classic idea of “delayed differentiation” in supply chain manage-
ment, which has been extensively studied in the operations management literature (Lee and
Tang [55], Swaminathan and Tayur [78]), using AI to screen patients at their point of care
can be viewed as a way to achieve “expedited differentiation.” The benefit is not only in sepa-
rating different types of patients based on their risk levels. It also has implications for patient
adherence behavior (Wolf et al. [88]).

Second, the implementation of AI systems has implications for the potential replacement
or augmentation of human workers. Consider, for example, the case of LumineticsCore, an AI
system that facilitates the screening of diabetic patients in primary care settings, enabling the
early diagnosis of retinopathy, one of its explicit goals. Looking at the diagnostic process for
diabetic patients through the lens of a supply chain, we identify an upstream entity (the pri-
mary care physician) and a downstream entity (the ophthalmologist). The deployment of
LumineticsCore can variably increase or decrease the demand for services provided by the
downstream entity, depending on the baseline screening rate—currently below 20% (Benoit
et al. [12], Channa et al. [19])—and the level of adherence to medical advice prior to the
deployment of the AI system. Thus, those downstream in the supply chain may be inclined to
support the widespread use of AI in primary care if adherence is particularly high and the
baseline rate remains low. This example highlights the power of a supply chain perspective in
assessing challenges that arise within the healthcare ecosystem (Betcheva et al. [14], Dai and
Tayur [25]).

Third, healthcare is a high-stakes application domain compared with many traditional
operations management domains (e.g., retail operations, supply chain management, and reve-
nue management), so it naturally imposes more organizational and operational constraints.
The need for security and accountability has also inspired new research questions and can
sometimes dictate the choice of AI tools and development approaches (Rudin [70]).

2. Using AI to Increase Clinical Productivity and Expand Access
to Healthcare
Although the idea of using AI to improve clinical productivity and access to care is intuitive,
the mechanisms underlying such improvements are not well understood. To our knowledge,
there has been no formal modeling effort to help estimate such improvements. Such a model
is important because it can help generate empirically testable hypotheses and inform policy
and management decisions related to the use of AI in everyday healthcare.

We now provide a sketch model to capture various factors that drive clinical productivity in an
autonomous AI-enhanced healthcare environment. Our model is motivated by B-PRODUCTIVE,
a recent preregistered randomized controlled trial conducted in Bangladesh (Orbis [65]) using
LumineticsCore to screen patients for diabetic retinopathy, and has broader implications for envir-
onments with limited healthcare resources.

Consider a system with a potential patient demand rate, denoted by Λ, that is much
greater than the system capacity, denoted by µ. To simplify the analysis, we assume that the
patient arrival process is a Poisson process, that service time is exponentially distributed, and
that there is a single specialist in the system. We denote by s the true disease state of each
patient, which can be either positive (s � 1) or negative (s � 0). The patient population has a
prevalence of ρ (0 < ρ < 1). Following the rational queueing theory framework (Anand et al.
[8], Dai et al. [27], Hassin and Haviv [42]), we consider a queue regulator (who may be, for
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example, a hospital administrator) who chooses a proportion (δ) of arriving patients to serve
in order to ensure a reasonable level of expected waiting time, denoted by ω. The arrival rate
of patients served by the specialist is λ ≡ δΛ. The queueing system is an M=M=1 queue with
an arrival rate of λ and a service rate of µ, that is,

1
µ�λ

≤ ω,

which gives the maximum system throughput in this system without AI:

λ0 � µ� 1
ω
: (1)

2.1. Productivity Impact of the AI System: A Baseline Model
Now we introduce an autonomous AI system to triage patients. The AI system generates a
binary signal ξ, which can be either p (which stands for “positive”) or n (which stands for
“negative”), which is informative about the patient’s disease state but imperfect. It has a sen-
sitivity of α and a specificity of β, that is,

Pr(ξ � p | s � 1) � α and Pr(ξ � n | s � 0) � β:

Not all patients are eligible for AI screening; Reasons why certain patients may not be eligible
for AI screening include having symptoms such as known vision loss when should be seen by a
specialist (Channa et al. [19]). Those who are not eligible for AI screening are directed to a
specialist when there is sufficient capacity. We denote by γ the proportion of patients who are
eligible for AI screening.

Suppose the goal of the queuing controller is to maintain a specific expected waiting time,
represented by the variable ω. It is possible to allow a significant percentage of patients,
denoted as δ′, into the system under this constraint. We define λ′ as the rate at which all the
permitted patients arrive, which can be calculated as λ′ � δ′Λ. The patients who end up see-
ing the specialists are either those who do not qualify for AI assistance, or those who, despite
qualifying for AI assistance, receive a negative outcome from the screening process. The
arrival rate of patients seen by the specialist is

{(1� γ) + γ[ρα+ (1� ρ)(1� β)]} ·λ′:

The queueing system (for the specialist’s service) is an M=M=1 queue with an arrival rate of
λ′ and a service rate of µ, that is,

1
µ� {(1� γ) + γ[ρα+ (1� ρ)(1� β)]} ·λ′ ≤ ω,

which gives the maximum system throughput in this AI-augmented system:

λ1 � µ� 1
ω

1� γρ(1� α)� γ(1� ρ)β : (2)

Comparing (1) with (2) gives the productivity increase due to the use of AI:

Δλ1 � λ1 � λ0 � µ� 1
ω

� �
· γρ(1� α) + γ(1� ρ)β
1� γρ(1� α)� γ(1� ρ)β : (3)

As a numerical example, consider the case where ρ � 0:3, γ � 0:95, α � 0:9, and β � 0:8. In
this case, (3) implies that Δλ1 is equal to 1:275 ·λ0, indicating a 27.5% increase in system
throughput, a primary measure of clinical productivity.

From (3), Δλ1, the change in arrival rate, is directly proportional to γ (the proportion of
patients eligible for AI) and β (the specificity of the AI system), but inversely proportional to
α (the sensitivity of the AI system). Furthermore, as long as we can safely assume that α+
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β > 1 (suggesting that the AI system performs better than a random classifier), we observe
that δλ1 is also inversely correlated with ρ (disease prevalence). These observations suggest
that an autonomous AI-enabled device could provide a greater increase in productivity under
the following conditions: high disease prevalence, a larger proportion of patients eligible for
AI, and a highly specific but not overly sensitive AI system. However, it is important not to
misinterpret these findings to mean that a less sensitive AI-enabled device is universally pref-
erable. In fact, a device with high sensitivity is advantageous because it ensures a low rate of
false-negative diagnoses; the safety of the device is closely tied to its sensitivity.

2.2. Patient Heterogeneity
The basic model in Section 2.1 assumes that the service time for the human specialist to interact
with each patient follows the same exponential distribution. In reality, patient conditions may
have different levels of complexity. As our preliminary analysis from the B-PRODUCTIVE
study shows, using AI to triage patients means that the human specialist will serve more complex
patients, all else being equal.

To incorporate this aspect, consider a scenario where each patient falls into one of two cate-
gories: high complexity or low complexity. We denote by κ the probability that a randomly
selected individual from the general population is classified as high complexity. Moreover, we
will use ρh to denote the prevalence of the disease among high-complexity individuals and ρl
for its prevalence among low-complexity individuals. Here, ρh > ρl , meaning the disease prev-
alence is higher among high-complexity individuals; κ, ρh, and ρl satisfy

κ · ρh + (1� κ) · ρl � ρ: (4)

In addition, the specialist’s service rates for patients of high complexity and low complexity
are represented as µh and µl, respectively, so that µh < µl and

κ ·µh + (1� κ) ·µl � µ,

where µ is the average service rate for a patient randomly selected from the population.
To simplify the analysis, we assume that both types of patients are eligible for AI with the

same probability (γ). We also assume the same level of sensitivity and specificity for both
types of patients.

The hospital administrator does not have the ability to determine the complexity level of
each patient upon arrival. The administrator chooses a ratio δ′′ to ensure that the expected
waiting time is no longer than ω. A total arrival rate of λ′′ � δ′′ ·Λ is first sent to be screened
by AI and is next sent to the specialist only if the AI screening result is positive or if they are
not eligible for AI.

In this case, the arrival rate of patients seen by the specialist is

{(1� γ) + γκ[ρhα + (1� ρh)(1� β)] + γ(1� κ)[ρlα + (1� ρl)(1� β)]} · λ′′,

which, using (4), can be rewritten as

{(1� γ) + γ[ρα + (1� ρ)(1� β)]} · λ′′:

The average service rate, on the other hand, is no longer µ. It can now be expressed as

µ′′ � (1� γ)µ + γ · κ[ρhα + (1� ρh)(1� β)]
κ[ρhα + (1� ρh)(1� β)] + (1� κ)[ρlα + (1� ρl)(1� β)] · µh

+ γ · (1� κ)[ρlα + (1� ρl)(1� β)]
κ[ρhα + (1� ρh)(1� β)] + (1� κ)[ρlα + (1� ρl)(1� β)] · µl ,

(5)

which is less than µ because ρh > ρl and µh < µl .
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Using the same logic as before, to achieve an average wait time of ω, the hospital adminis-
trator will choose a λ′′ such that

1
µ′′ � {(1� γ) + γ[ρα+ (1� ρ)(1� β)]} ·λ′′ ≤ ω,

which implies λ′′ can be at most

λ2 � µ′′ � 1
ω

(1� γ) + γ[ρα+ (1� ρ)(1� β)] : (6)

Although (6) is similar to (2), it is different because in the numerator, the average service rate
µ′′ depends on the patient mix. Because of this difference, the productivity improvement

Δλ2 � λ2 �λ0 � µ′′ � 1
ω

(1� γ) + γ[ρα+ (1� ρ)(1� β)]� µ� 1
ω

� �

is less than λ1 �λ0. Contrary to the intuitive implications drawn from our basic model (see
Section 2.1), comparative statics can reveal surprising results. For instance, in some cases,
Δλ2 might decrease as γ (the percentage of patients eligible for AI screening) increases. Unlike
in the basic model, an increase in γ does not necessarily lead to improved productivity. In
fact, as more patients become eligible for AI screening, the average service time can actually
increase. This unexpected result is largely due to a greater proportion of high-complexity
patients being seen by the specialist. Such results offer insights into the limits of AI’s potential
to enhance productivity and inform cost effectiveness analysis.

In this section, we outlined a basic model that illustrates the potential of using AI to
enhance clinical productivity while recognizing the practical intricacies that extend beyond
the simplified confines of our model. The strong tradition of stochastic modeling and simula-
tion provides an opportunity to gain an insightful understanding of the impact of AI on other
important facets of healthcare, such as patient safety, accessibility, and equity. More impor-
tantly, researchers in the fields of operations research and management science are well posi-
tioned to address the complex service design challenges that arise from the integration of AI
into clinical practice. For a discussion of service design research opportunities in this context,
see Dai and Tayur [26].

3. Stakeholder Buy-in for Medical AI
Despite the potential of AI to improve healthcare productivity, access, and equity (Channa
et al. [19], Wolf et al. [88]), it must gain sufficient stakeholder acceptance to be widely used in
practice (Abràmoff et al. [1], Dai and Tayur [26]). A variety of factors, including liability con-
cerns (Price et al. [67]), data quality and privacy (Singh et al. [75]), explainability (Lebovitz
et al. [52]), standards of development and validation (Lebovitz et al. [53]), algorithmic aver-
sion (Longoni et al. [58]), perceived threats to autonomy (Henry et al. [45]), incentive misa-
lignment (Agrawal et al. [6]), and financial factors, especially reimbursement, may influence
whether and how physicians and patients adopt AI. Each of these factors provides a rich con-
text for theoretical development and related empirical, laboratory, and field work. In this sec-
tion, we draw on a recent working paper by Dai and Singh [24] to discuss the impact of
physician buy-in on the use of AI in healthcare, focusing on liability implications when physi-
cians use AI in their medical practices.

Liability concerns have always been a major driver of medical decision making, resulting in
an annual cost to the medical liability system (including malpractice insurance premiums,
malpractice litigation costs, and defense medicine) that has been estimated at $55 billion per
year (Mello et al. [61]). The ever-increasing use of AI in medicine may increase or decrease
physicians’ malpractice liability when adverse patient outcomes occur (Sullivan and
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Schweikart [77]). Accordingly, such liability implications may cause the physician to over- or
under-use AI.

To make things more concrete, consider the scenario of treatment planning that was ini-
tially discussed by Price et al. [67]. In this particular scenario, physicians have the choice of
prescribing either a standard or a nonstandard treatment plan for a patient. A standard treat-
ment plan is defined as one that follows the standard of care. For example, in the treatment
of ovarian cancer, the dosage of the chemotherapy drug bevacizumab may vary between a
standard plan of 15mg/kg every three weeks and a nonstandard plan of 75mg/kg every three
weeks. Under the existing liability system, a physician is liable if deviation occurs from the
standard of care and harms the patient. Conversely, the physician is protected from liability
if the standard of care was followed. This liability system, as illustrated in Table 1, incenti-
vizes physicians to err on the side of a low or standard dosage because this choice reduces their
potential liability. As a result, physicians may be inclined to prescribe a standard regimen
even when a nonstandard regimen may be more effective.

Now we introduce an AI system into the scenario. The AI system is capable of generating a
binary signal that advises the physician to provide either a standard or a nonstandard treat-
ment plan. The AI system is considered “assistive AI” in the sense that it guides the physician
in making the final decision but cannot make the decision on its own.1 Therefore, the physi-
cian is the one who makes the final decision about the treatment plan and is solely responsible
for potential malpractice liability (Abràmoff et al. [3], Price et al. [67], American Medical
Association [7]). Depending on the AI system’s recommendation (which can be either stan-
dard or nonstandard), the physician’s final decision (which, again, can be standard or non-
standard), and the patient outcome (which can be either good or bad), we have a total of
eight scenarios (see Table 2).

It is safe to eliminate cases 1, 3, 5, and 7 because the physician is generally not expected to
be liable if the patient’s outcome is good. We are left with cases 2, 4, 6, and 8. Of these, it is
safe to rule out case 2, in which the AI system merely reinforces the standard treatment plan,
so the physician is unlikely to be liable for acting in accordance with both the AI system and
the standard of care. Therefore, we have only three cases (4, 6, and 8) to weigh. We have two
reasonable liability schemes to consider.

• First, as per Russell and Norvig ([71], p. 1051), when the AI system demonstrates sub-
stantial accuracy, it could potentially override the current standard of care. In such a
scheme, a physician who consults AI for treatment planning would be held accountable for
poor patient outcomes if they deviate from the AI system’s recommendation, as illustrated
in cases 4 and 8 in Table 2. Conversely, if the physician adheres to the AI system’s recom-
mendation (as depicted in case 6 in Table 2), they would not bear the liability for subpar
patient outcomes.

• Second, if the Russell-Norvig liability scheme seems excessively radical, a more tem-
pered perspective could be proposed, viewing the AI system as a tool to enforce the current
standard of care, rather than overriding it (Price et al. [67], Tanenbaum et al. [81]). Under
this liability framework, a physician would not be liable for adhering to the standard of care
(case 8 in Table 2), but would still be accountable for poor patient outcomes when straying
from the standard of care (cases 4 and 6 in Table 2). One can refine this argument by adding

Table 1. Prevailing liability scheme (without the option of using AI).

Physician decision Patient outcome Physician liable?

Standard Good No
Standard Bad No
Nonstandard Good No
Nonstandard Bad Yes
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that a physician’s liability might be lessened when the AI recommends a nonstandard treat-
ment plan (case 6 in Table 2), whereas it might be heightened when the AI recommends the
standard treatment plan (case 4 in Table 2).

Tables 3 and 4 present the two liability schemes discussed previously. Based on each of
these liability schemes, a decision analysis model can be developed to analyze the physician’s
decision about whether and how to use AI. In the U.S. healthcare environment where the phy-
sician is compensated on a fee-for-service basis for both in-office drug delivery and the use of
AI, Dai and Singh [24] find that under both liability schemes, physicians may use AI for low
uncertainty cases and avoid using AI for high uncertainty cases. This finding, consistent with
what Price et al. [67] argue, means that physicians may avoid using AI in situations where it
can help them generate better information because of the possibility that AI’s recommenda-
tion may contradict their ultimate decision. In contrast, physicians may use AI in cases with
little or no uncertainty, essentially using AI to confirm their own intuition. This result
enriches the literature on algorithmic aversion and provides theoretical support for measures
to reduce such aversion, such as the introduction of “AI insurance” (Bertsimas and Orfanou-
daki [13], Stern et al. [76]).

A key driver of AI adoption is its safety and efficacy. It is often argued that physicians are
more likely to use AI when it makes sufficiently accurate predictions. Counterintuitively, Dai
and Singh [24] show that as the precision of AI improves, the physician’s tendency to avoid
AI in high-uncertainty cases may be amplified. This is because as AI becomes more accurate,
all else being equal, the physician is more likely to have deviated from the AI recommendation
when patient harm occurs. This, in turn, creates a disincentive for the physician to use AI
because both liability systems penalize the physician for deviating from AI recommendations,
albeit in different ways.

The section has focused on liability concerns connected to the use of medical AI. Other
than liability issues, other primary drivers of AI adoption include ease of use, seamless inte-
gration into workflows and, most importantly, both direct and indirect reimbursement meth-
ods. The direct method involves reimbursement, while the indirect approach relies on quality
measures such as Healthcare Effectiveness Data and Information Set (HEDIS) and Risk
Adjustment Factor (RAF)/Hierarchical Condition Category (HCC) (see Abràmoff et al. [3]

Table 2. Eight different scenarios when the physician uses AI to assist in
treatment planning.

Case number AI recommendation Physician decision Patient outcome

1 Standard Standard Good
2 Standard Standard Bad
3 Standard Nonstandard Good
4 Standard Nonstandard Bad
5 Nonstandard Nonstandard Good
6 Nonstandard Nonstandard Bad
7 Nonstandard Standard Good
8 Nonstandard Standard Bad

Table 3. Second liability scheme where the physician consults AI before
deciding on the treatment plan.

AI recommendation Physician decision Patient outcome Physician liable?

Standard Nonstandard Bad Yes
Nonstandard Nonstandard Bad No
Nonstandard Standard Bad Yes
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for details). A case in point is the recent demise of Pear Therapeutics. Despite having a clini-
cally validated AI that was proven to benefit patients and had received FDA approval (Waltz
[86]), the company lacked an appropriate reimbursement strategy, leading to its eventual col-
lapse (Kellaher [50]).

4. Regulatory and Payment Models for Medical AI
The emergence of AI in the healthcare industry, particularly in the form of medical devices,
has spurred significant change. The transformative impact of this technology is evidenced by
the 521 AI-enabled medical devices approved for clinical use by the FDA as of July 2022
(FDA [32]), with more expected in the future. Notably, approximately 75% of these devices
are focused on a single medical specialty—radiology, followed by cardiovascular disease and
hematology. Certain specialties, including dermatology, have yet to see an FDA-approved
AI-enabled medical device as of 2023 (Young et al. [93]). A detailed breakdown of FDA-
approved AI-enabled medical devices by specialty is shown in Figure 2.

The primary goal of AI in healthcare is to improve patient and population outcomes,
reduce costs, and increase health equity and access, necessitating its widespread adoption
under a sustainable business model. From an operational perspective, a constellation of
stakeholders—including patients and their organizations, providers and their organizations,
payers, value-based care organizations, regulators, ethicists, and AI developers—are on the
critical path to widespread and sustainable adoption of healthcare AI. It is important to rec-
ognize the nuanced interdependencies among their interests, which we will attempt to

Table 4. First liability scheme where the physician consults AI before deciding
on the treatment plan.

AI recommendation Physician decision Patient outcome Physician liable?

Standard Nonstandard Bad Yes and more
Nonstandard Nonstandard Bad Yes and less
Nonstandard Standard Bad No

Figure 2. (Color online) Breakdown of FDA-approved AI-enabled medical devices by specialty (as of
July 2022).

Source. FDA [32].
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articulate. The path from conceptualization to widespread deployment of healthcare AI is
characterized by a time lag that is the result of various clinical, scientific, and regulatory
requirements. Importantly, each stakeholder can influence this time lag.

In this section, we highlight the roles of two key stakeholders whose policies significantly
influence the development, validation, and timeline for widespread deployment of AI-enabled
medical devices: FDA regulatory policies and payer reimbursement policies.

4.1. Regulatory Models for AI in Medicine
The FDA’s regulatory framework significantly influences the adoption and development of AI
in the medical sector, particularly through its 510(k) and de novo pathways (Benjamens et al.
[11]). This role is underscored by the agency’s commitment to ethical principles in AI regula-
tion, a stance echoed by many stakeholders (Abràmoff et al. [3]). Nevertheless, issues such as
overfitting, data shift susceptibility, and bias against underrepresented subgroups persist
(Wu et al. [89]).

A prevailing debate centers around the “AI flywheel effect” (Gurkan and de Véricourt [41]),
which suggests that an AI algorithm will improve with more use, as it generates and learns
from more data. Critics argue that current regulatory measures do not fully exploit this effect.
To address this, the FDA introduced the Predetermined Change Control Plan (PCCP) and
the Precertification Program (FDA [31]) as part of their continual learning policy. The PCCP
facilitates the reporting of anticipated modifications to AI devices, while the Precertification
Program encourages innovative regulatory oversight approaches for AI-enabled medical
devices developed by organizations maintaining high standards of quality and excellence.
However, these programs do not fully resolve the complexities involved in evaluating real-
world performance, which often prompts requirements not anticipated in advance. According
to the principle of “metrics for ethics” (Abràmoff et al. [3]), it is imperative to quantify the
impact of specific changes to a validated and authorized AI on safety, efficacy, and equity.
This includes understanding the variability in an AI’s sensitivity due to changes in its training
set (Abràmoff et al. [3]).

Although these initiatives incentivize continual learning and foster AI development, sys-
tematic evaluation and stakeholder involvement remain key to their success (Vokinger et al.
[85]). Critics voice concerns about potential patient harm due to decreased accuracy and the
introduction of undesirable bias (Abràmoff et al. [3], Char et al. [20]). They propose a cautious
approach favoring rigorous validation, controlled “episodic” updates, and comprehensive risk
assessments. These critics fear that continuous learning toward a potentially flawed physi-
cian’s determination could inadvertently compromise the accuracy and safety of AI systems
(Youssef et al. [94]). This ongoing debate underscores the need for a balanced approach that
harnesses the potential of continual learning without compromising patient safety.

Here, we briefly outline two directions for theoretical modeling.

4.1.1. Moral Hazard in AI Development Practice. A key factor in the FDA’s
approach to authorization is its concern for algorithm quality. Modern AI algorithms based
on neural networks are prone to overfitting and unstable performance if best development
practices are not followed (Chollet [21]). Thus, under the PCCP program described above,
one concern is that the AI developer may not follow best development practices, resulting in
overfitted algorithms that are advertised as improved but actually suffer from poor real-world
performance. This can be addressed by having a metric for performance improvement based
on changes.

On a conceptual level, concerns about the quality of the AI development process are related
to the well-known concept of moral hazard in the principal-agent theory literature (Laffont
and Martimort [51]). Almost all of the moral hazard literature assumes that the outcome is
perfectly and immediately observable. Several recent papers at the intersection of economics
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and operations management explore the effect of imperfect outcome visibility, due to, for
example, limited inventory (Dai et al. [28]) and a finite queuing buffer (Baiman et al. [10]).
However, these papers consider the lack of inventory or queue buffering as the central driver
of outcome invisibility. In the case of AI devices, the lack of visibility is often caused by the
lack of a sufficiently large and diverse user base. Thus, a low-demand AI device may fall into
a low-accuracy trap, where its low accuracy makes it difficult to develop a large and diverse
user base; the small and relatively homogeneous user base, in turn, makes it difficult to evalu-
ate its real-world performance and thus improve the algorithm. In addition, even with a large
enough user base, it often takes a long time to discover the real-world performance of a device;
The lagging nature of results reporting provides another venue for future research. This signif-
icant time lag underscores the importance of rigorous premarket validation, using reference
standards that prioritize actual outcomes over comparisons with physicians or other experts
(Abràmoff et al. [3]).

4.1.2. Market Expansion and Research and Development Funding. The transition
from the conceptualization of AI to its widespread, sustainable deployment requires signifi-
cant funding, typically provided by angel investors and venture capital (VC). The VC invest-
ment model, typically organized into a series of funding stages, each with distinct timelines
and milestones, has been instrumental in driving growth in the broader technology sector
(Cumming and Johan [23], Gilson [38]).

However, the funding model faces unique challenges when applied to AI-enabled medical
devices. These challenges stem from the uncertainties surrounding the required “runway” or
time lag for these devices to become financially self-sustaining. AI-enabled devices differ from
other high-risk sectors, such as pharmaceuticals and traditional medical devices, due to their
continuous learning and adaptation (FDA [32]), data network effects (Varian [83]),2 interac-
tion with human decision makers (Reverberi et al. [69]), and ethical considerations (Char et al.
[20], Shachar and Gerke [73]).

The role of healthcare AI investors is to bridge the gap between the conceptualization of an
AI system and its widespread adoption. The length of this runway is a critical factor for inves-
tors, and all stakeholders can influence it. For example, safety and lack of bias are important
considerations for many stakeholders. Strong FDA oversight in demonstrating safety or lack
of bias provides assurance to other stakeholders, such as CMS, that certain safety parameters
have been met (Centers for Medicare & Medicaid Services [18]).

However, if FDA regulatory scrutiny is low and minimal safety evidence is required, other
stakeholders such as CMS, the American Medical Association (AMA), or patient organiza-
tions such as the American Diabetes Association may be less comfortable with AI, potentially
lengthening the runway. Thus, shortening the “runway” is critical to the success of AI in
healthcare, but it can only be achieved by carefully navigating the critical path. Reducing the
scientific, regulatory, or clinical requirements for one stakeholder without understanding the
interdependencies with all other stakeholders will not significantly impact the overall dura-
tion of the “runway.”

The uncertainty in AI funding is primarily related to the unknown time lag. If the duration
of this time lag were known, the net present value of an investment aimed at bridging this
gap for healthcare AI could be accurately analyzed and calculated. However, uncertainty hin-
ders such financial analysis. A shorter time lag would require less funding to bridge the gap
and would also yield a higher internal rate of return on the funds invested.

Despite these challenges, calls for a lower regulatory burden for AI should be interpreted
within this framework of critical path operational research. Furthermore, even if the burden
of FDA regulation were reduced, continued uncertainties about the value, safety, and desir-
ability of AI from a payer perspective could potentially delay or reduce reimbursement rates,
thereby impeding the achievement of widespread, sustainable adoption in a meaningful way.
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4.2. Reimbursement Models for AI in Medicine
Despite the ongoing calls for reform in healthcare payment methods, the U.S. healthcare
industry largely operates on the fee-for-service model (Burns and Pauly [15]). Critics of this
model argue that it potentially fuels higher healthcare costs and perpetuates a system in
which healthcare providers are incentivized to conduct additional procedures, irrespective of
their necessity or appropriateness, as determined by stakeholders other than patients and pro-
viders. Conversely, proponents of this model suggest that it plays a crucial role in maintaining
accessibility, as it allows both the patient and provider to decide on the provision of a specific
service, independent of other stakeholders. However, as an increasing number of healthcare
services are funded by entities other than patients, these stakeholders are demanding a say in
the care decisions traditionally made between the provider and patient, a context within
which the fee-for-service system originally evolved. This external influence often manifests as
“value-based care,” where other stakeholders, including payers, regulators, ethicists, and
others, insist that reimbursement should be optimized based on their perception of “value.”
This value could be defined in terms of improved patient outcomes, health equity, overall
expenditures, and quality-adjusted life years, among other metrics. The challenge for policy-
makers and healthcare leaders lies in striking a balance between cost containment and the
pursuit of quality within the U.S. healthcare system.

Two primary approaches currently exist for reimbursing physicians who use AI. In the case
of LumineticsCore, the AI creator established a charge using an equity-based, per-use frame-
work for AI reimbursement (Abràmoff et al. [2]). This AI system was the first FDA-cleared
autonomous diagnostic device. By using the standard mechanisms of the CPT Editorial Panel
and CMS for determining appropriate reimbursement based on charges sent to billing physi-
cians, CMS was able to establish, for the first time, national reimbursement for autonomous
AI (Abràmoff et al. [1], Centers for Medicare & Medicaid Services [18]). Starting in May 2019,
the CPT code 92229, specifically created for autonomous AI, allowed for per-use reimburse-
ment (Abràmoff et al. [1]). This model, which aligns charges and reimbursements on a per-
patient basis, invoices the charges per use. As a result, the physician using the autonomous
AI, typically in primary care clinics, is both charged and reimbursed per patient, eliminating
the need for upfront investment. This allows even smaller clinics to use this form of autono-
mous AI.

An alternative reimbursement model for medical AI involves the new technology add-on
payments (NTAP) within the inpatient prospective payment system (IPPS). This method
has been used for the reimbursement of several FDA-approved AI systems, such as Viz.ai’s
Viz LVO. This system analyzes CT images of the brain and alerts hospital staff when a sus-
pected large-vessel occlusion (LVO) is identified. However, this reimbursement approach is
only valid for four years, casting doubt on its long-term sustainability given the likely ongoing
costs of the service. Other AI systems reimbursed using the NTAP model include the follow-
ing (Parikh and Helmchen [66]):

• Rapid AI’s Rapid LVO, an AI-guided medical imaging acquisition system designed to
help acquire cardiac ultrasound images

• PROCEPT BioRobotics Corporation’s AQUABEAM system, an autonomous tissue
removal robot for the treatment of benign prostatic hyperplasia–related symptoms of the
lower urinary tract

• Caption Health’s Caption Guidance, which is a medical imaging acquisition system
that uses AI to assist in the acquisition of cardiac ultrasound images

• Rapid AI’s Rapid Aspects, a computer-assisted diagnostic device designed to character-
ize abnormalities in brain tissue on brain computed tomography images

• AIDoc’s Briefcase for PE, a radiological computer-assisted triage and notification soft-
ware that detects pulmonary embolism
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The NTAP model differs from the per-use model in that it does not reimburse providers for
the use of the AI system per se. Rather, an additional payment is made only when the AI sys-
tem provides “substantial clinical benefit,” such as early detection of medical conditions (Mur-
ray et al. [63]). In the case of Viz LVO, for example, the NTAP adds a maximum hospital
payment of $1,040 for managing a stroke episode. Although this model may seem well aligned
with the philosophy of reimbursing a procedure based on the value it creates according to the
payer, its real-world impact is more or less mixed: Viz.ai has marketed the device as a way to
detect missed stroke cases and generate additional revenue for hospitals, estimating that for a
health system with six spoke centers, each with an estimated 31 untreated stroke cases per
year and a reimbursement of $28,000 per case, use of the device can generate a total of $5.2
million in “potential new revenue opportunity” (Vizai [84]).

The NTAP model, as Abràmoff et al. [1] note, has some major limitations. First, NTAP
only covers inpatient services under the current IPPS, leaving outpatient and physician ser-
vices outside its scope. Second, NTAP’s time limit is another significant limitation. The add-
on payments are only available for three years for a given technology or indication. Given the
significant resources required to develop, acquire, and implement technologies, this time limit
may discourage long-term investments. Third, the financial structure of NTAP is constrain-
ing. The maximum add-on payment is limited to 65% of the incremental cost of the new tech-
nology. The hospital’s costs for a particular stay must exceed the bundled payment amount
under the Medicare severity diagnosis-related group (MS-DRG) system for this payment to
be made. Therefore, to qualify for the add-on payment, hospitals must demonstrate that they
have suffered a financial loss. Finally, many technologies may find it difficult to meet NTAP’s
stringent eligibility requirements. A new technology must be novel, cost-effective, and demon-
strate substantial clinical improvement over existing technologies. Although achieving FDA
breakthrough status may satisfy the newness and clinical improvement requirements, new-
ness is a temporary state that exists only until utilization data are available.

To our best knowledge, even with a recent stream of medical literature that provides the
guiding framework for reimbursement design (Abràmoff et al. [1], Parikh and Helmchen [66]),
no formal research has been conducted into the optimal design of payment schemes for
AI-based medical devices (Dai and Tayur [26]). Among many venues for future research, one
entails understanding how the use of AI impacts physicians’ attention or effort toward indi-
vidual cases. A paper somewhat related to this idea is by Adida and Dai [4], who study the
impact of the physician payment scheme on a physician’s diagnostic effort and testing deci-
sions. They present a model in which a patient visits a physician to seek a diagnosis for a
given medical condition. The physician estimates the prior probability that the patient is suf-
fering from a serious condition before deciding the level of effort (high or low). The physician
may also perform a confirmatory test, which is a diagnostic test to confirm a serious condition.
The diagnostic test, which may be a conventional one or AI enabled, is confirmatory because
the physician cannot diagnose a serious condition without performing the test. The model
assumes that the baseline examination provides an unbiased prior of the patient’s condition,
and if the physician exerts high diagnostic effort, a private signal informative of the patient’s
true state will be generated. The tradeoff here is rather subtle: High diagnostic effort can
either reduce the need for testing (because the effort may generate a signal that leads to a
lower updated likelihood of disease) or increase the propensity to test (because the effort may
generate a signal that increases the likelihood of disease and thus necessitates testing). Thus,
the relationship between diagnostic effort and testing can be either complementary or substi-
tutive. Under a fee-for-service payment scheme, the relationship depends on the revenue gen-
erated from testing. Adida and Dai [4] conclude that there does not exist a fee-for-service
payment level that induces the socially optimal amount of effort and testing. Instead, they
show a promising payment model entails providing the physician with an additional payment
for testing only if the test produces a positive result. This payment model has the same spirit
as the NTAP model, but it is for physician payment (not hospital payment). This distinction
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is important because physicians are the ones who ultimately determine the allocation of
healthcare resources (Dranove and Satterthwaite [29]). Ultimately, the validity of these pay-
ment models hinges on who defines the “value” of a service or even a health outcome. In this
context, it is the external experts, rather than the provider or patient, who make these
determinations.

5. Conclusions
AI has come a long way since its inception in the 1950 s, and in every incarnation of AI, it
has had deep and growing ties to medicine. In its current boom, which began in 2011, AI is
increasingly being integrated into healthcare workflows in the tangible form of medical
devices. The integration of AI into healthcare is still in its early stages, but it has the poten-
tial to revolutionize the way medicine is practiced. AI-powered medical devices can help
healthcare workers make more accurate and timely diagnoses, prescribe more effective and
personalized treatments, and operationalize public health measures. Purposefully designed
AI-augmented healthcare systems will help improve the productivity, access, and equity of
healthcare delivery.

The integration of AI into healthcare workflows presents a number of challenges that need
to be addressed. Key among these is the need for sustained support from all stakeholders,
which is complicated by the interdependencies between them. An improvement that appears
beneficial to one stakeholder may actually result in less support from another. Ongoing
research has identified a number of barriers to the adoption and use of AI. These include lia-
bility (Price et al. [67]), data quality and privacy (Singh et al. [75]), explainability (Lebovitz
et al. [52]), standards for development and validation (Lebovitz et al. [53]), algorithmic aver-
sion (Longoni et al. [58]), perceived threats to autonomy (Henry et al. [45]), and misaligned
incentives (Agrawal et al. [6]). However, some argue that these barriers can be mitigated in
specific cases, as evidenced by the widespread stakeholder support for LumineticsCore and
similar autonomous AI systems (Abràmoff et al. [1]). More broadly, these barriers need to be
thoroughly examined through theoretical, empirical, laboratory, and field work.

To ensure safety and efficacy, AI-enabled medical devices must undergo the same rigorous
approval process as other medical devices. This process can be time consuming and costly.
Because these devices have the potential to affect the health and well-being of patients, the
regulatory approval process for AI-enabled medical devices requires a high level of scrutiny.
This requires extensive testing and validation to ensure that the devices meet regulatory
requirements for safety and effectiveness. However, because of the unique characteristics of
AI-based medical devices, the traditional regulatory approval process may not be readily
applicable. A key role is expected to be played by a better quantification of the impact on
safety, efficacy, and equity of a previously validated AI. The FDA has proposed an action
plan that includes the development of new regulatory approaches tailored to the specific char-
acteristics of AI-based medical devices (FDA [31]). Accordingly, sophisticated modeling
efforts are in order for performance analysis and validation of the new regulatory approaches
in view of the interests of multiple stakeholders.

Another significant challenge to integrating AI into healthcare workflows is establishing a
sustainable payment model, particularly for AI that positively impacts patient outcomes,
costs, and health equity. Currently, there are two primary methods of reimbursing physicians
for the use of AI: the equity-based model and the NTAP. The equity-based model prioritizes
access and health equity, ensuring that beneficial AI technologies are widely available. The
NTAP model, on the other hand, reimburses providers only when the AI system delivers
“significant clinical value.” Despite the proliferation of these models, there appears to be a
lack of formal research on the optimal design of payment models for AI-enabled medical
devices. This knowledge gap indicates the need for further research to establish more effective
payment structures that facilitate the effective use of AI in healthcare.
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This tutorial focuses on medical AI, which has the potential to help clinicians screen, diag-
nose, and treat patients. AI can be used to automate tasks such as note taking, patient mes-
saging, and integration across multiple data collection systems. The rapid development of
generative AI has also led to the possibility of generative AI systems trained on a medical
knowledge base performing some reasoning activities (Moor et al. [62]). It is also possible to
use federated learning (Rajpurkar et al. [68]), a method for training machine learning models
on distributed data across multiple devices or servers without directly sharing the data,
thereby preserving privacy, and federated causal inference (Xiong et al. [92]), an emerging
technique similar to federated learning but focused on causal inference, to improve AI algo-
rithms across multiple locations and data sources.

The integration of AI into healthcare workflows ushers in a new era of possibilities, where
the convergence of technology and compassion has the potential to change the very nature of
healthcare (Topol [82]). It is time for the operations research and management science com-
munity to chart a course for a future in which artificial intelligence serves as a beacon of hope
and healing, transforming the medical landscape as we know it.
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Endnotes
1The discussion in this section primarily pertains to assistive AI systems. However, it is important to note that
when dealing with autonomous AI systems, the majority of the liability tends to fall on the creator of the AI
(Abràmoff et al. [1]).
2The “data network effect” refers to the effect that algorithm quality may increase with the number of users (Varian
[83]). If an AI developer succeeds in further expanding its user base and leveraging the data network effect, a virtu-
ous cycle may follow, often referred to as the “AI flywheel effect” (Gurkan and de Véricourt [41]).
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