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Of the 950 artificial intelligence (AI) systems cleared by the U.S. Food and Drug Administration as

of June 2024, most function as classifiers to help screen or diagnose specific medical conditions. Yet,

questions remain about how to best integrate AI into healthcare workflows, including whether AI

should serve as a gatekeeper, determining which patients require human attention, or as a second

opinion to complement medical consultations. Motivated by this question, we model a healthcare

system in which patients can consult a specialist, an AI system, or both. The key design question

is whether the patient should first consult AI or the specialist, corresponding to AI’s gatekeeper

and second-opinion roles, respectively. We model a two-step decision-making process influenced by

an initial signal, or anchor. Contrary to popular belief, we show using AI as a gatekeeper does not

necessarily increase missed diagnoses; using AI as a second opinion, on the other hand, reduces missed

diagnoses but can also increase false positives. In general, the gatekeeper approach is preferable

in low-risk settings, whereas the second-opinion approach is better suited for high-risk patients for

whom avoiding missed diagnoses is a primary concern. Notably, scenarios exists where AI should

not be used for intermediate-risk patients for whom uncertainty is highest, challenging the premise

that AI is most useful in reducing uncertainty. Finally, applying our model to glaucoma diagnosis,

we numerically illustrate cost savings from optimizing patient pathways. Our work highlights the

potential for AI to contribute to the United Nations’ Sustainable Development Goals by optimizing

resource allocation and improving patient outcomes.
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1. Introduction

The clock is ticking for the United Nations’ Sustainable Development Goals (SDGs), a set of 17

goals aimed at improving economic, environmental, and social conditions worldwide by 2030 (Sodhi

and Tang 2024). The third of these goals is to “ensure healthy lives and promote well-being for all

*Tinglong Dai and Simrita Singh contributed equally to this paper and are listed in alphabetical order.
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at all ages.” Achieving this goal requires innovative solutions to bridge gaps in healthcare delivery,

particularly in low-resource settings (Chen et al. 2021, Lee et al. 2013, Lee and Tang 2018, Mehta

et al. 2016). Among these innovations, artificial intelligence (AI) stands out as a transformative

approach (Abràmoff et al. 2024, Dai and Tayur 2022). A compelling example of AI’s potential is

its application in screening for diabetic retinopathy (DR), a serious complication of diabetes that

can lead to vision loss. Approximately 11% of the U.S. population has diabetes (CDC 2024), which

is similar to the global prevalence (Sun et al. 2022). DR is a serious complication of diabetes that

can result in vision loss. Yet, less than 15% of diabetic patients receive the recommended annual

screening, primarily due to the cost and inconvenience of scheduling appointments with the few

available eye care specialists (Dai and Abràmoff 2023). AI-based devices, such as IDx-DR, with

their low variable costs and high diagnostic accuracy, can autonomously diagnose DR and flag

positive cases for human specialists.

Incorporating AI into routine healthcare delivery systems, however, requires purposeful design

(Dai and Tayur 2022). Of the 950 AI systems cleared by the U.S. Food and Drug Administration

(FDA) as of June 2024 (FDA 2024), most function as classifiers to help diagnose specific medical

conditions. However, the role of medical AI in healthcare delivery remains a subject of considerable

debate. In the U.S., many AI devices such as IDx-DR have been used primarily as gatekeepers at

the point of care (Dai and Abràmoff 2023). For example, patients who receive negative screening

results from IDx-DR are not referred to an ECP for a definitive diagnosis. An alternative approach

is to refer all patients to the ECP for diagnosis. Many ECPs do not have IDx-DR in their offices, so

they will make diagnoses without recourse to AI. If an ECP does have access to IDx-DR, they can

use IDx-DR after their encounter with the patient. In this “specialist-first” approach, AI serves as

a second opinion.

One potential concern about using AI as a gatekeeper is the risk of false negatives, where a

health condition of concern is missed (Dai and Tayur 2022). However, positive screening results can

provide additional information to healthcare professionals to help them make informed decisions

and confirm diagnoses. When a screening test returns a positive result, it raises awareness among

providers, leading to a reassessment that ensures accurate diagnoses and appropriate care for

patients.

Compared with gatekeeping, AI is widely believed to best serve as a second opinion. For example,

Ho et al.’s 2022 survey of 252 Australian eye care professionals shows a strong preference for using

AI as an additional tool after consultation (i.e., as a second opinion) rather than for an initial

diagnosis (i.e., as a gatekeeper), in part because of concerns that inaccurate AI advice may lead

to false-negative diagnoses: A patient with a DR condition may receive a false-negative screening

result, preventing the patient from being referred to the ECP. Similarly, a patient who does not
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have DR may receive a false-positive screening result from the AI system, potentially leading to

unnecessary tests and procedures.

Our work is motivated by the ongoing debate on whether AI should be used as a gatekeeper or

as a second opinion. Specifically, we seek to answer the following questions: (1) Compared with

the case without AI, what are the diagnostic performance and patient outcome implications of

using the “AI first” approach? (2) Compared with the case without AI, what are the diagnostic

performance and patient outcome implications of using the “specialist first” approach? (3) What’s

the optimal design choice between the “AI first” and “specialist first” approaches? To answer these

questions, we model and analyze the diagnostic performance and impact on patient outcomes under

these two approaches, generating insights into when AI should be used as a gatekeeper or as a

second opinion. For both approaches, inspired by the literature on judgment and decision-making

(e.g., Hastings 1970, Ogdie et al. 2012, Tversky and Kahneman 1974), our model incorporates

the decision process that depends on an initial signal, the so-called anchoring effect. This effect

is relevant because the order in which the specialist and AI see the patient affects the specialist’s

initial impression. Specifically, the first diagnosis generated tends to become an “anchor” that can

bias later assessments. Thus, if AI screens first, the specialist may anchor to that initial result,

even if it is inaccurate. Conversely, if the specialist examines the patient first, his initial diagnosis

may anchor AI’s algorithmic assessment.

First, we show that, contrary to popular belief (Ho et al. 2022), using AI as a gatekeeper does

not necessarily increase missed diagnoses compared with specialist-first diagnoses. The reason is

that when AI is used as a gatekeeper, in some cases, a specialist with an inaccurate diagnosis may

benefit from having an anchor from AI signal that is accurate. In particular, when AI has a higher

sensitivity than the specialist, using AI as a gatekeeper can help reduce the chance of false-negative

diagnoses. For the same reason, using AI as a gatekeeper does not necessarily reduce false-positive

diagnoses and thus unnecessary treatments. The reason is that AI could lead the specialist to

overdiagnose a condition that the patient does not have.

Second, we show using AI as a second opinion leads to fewer false-negative diagnoses than using

AI as a gatekeeper or not using AI. By having the specialist examine the patient first, the anchoring

to a false-negative diagnosis is mitigated. The specialist can then use AI as a second opinion to fill

in gaps and reduce human oversight. However, using AI as a second opinion may or may not reduce

false-positive diagnoses compared with not using AI. For example, suppose the prior confidence is

high, but the specialist makes a true negative diagnosis and AI makes a false-positive diagnosis.

In this case, AI’s contradictory diagnosis, given the high prior, can cause the specialist to accept

AI’s diagnosis.
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Third, whether AI should be used as a gatekeeper or as a second opinion depends on whether

avoiding false negatives or false positives is more important in a given clinical context. Taken

together, we find using AI as a gatekeeper is most beneficial for low-risk patients, for whom the

downside of false negatives is lower. Using AI as a second opinion, on the other hand, is optimal for

high-risk patients, for whom missing a diagnosis has serious consequences. Although this finding

may seem intuitive at first glance, the implication is surprising: These results suggest AI should

not be used when patients are neither high nor low risk. Put differently, AI should be avoided

altogether, neither as a gatekeeper nor as a second opinion, for the most uncertain patient groups.

This finding contradicts the intuition that, in the absence of agency problems, the role of AI is to

provide information to supplement physician decision-making, and that such information is most

valuable for intermediate-risk patients, for whom uncertainty is highest (Dai and Tayur 2022).

The decision pattern of avoiding AI for the most uncertain patient groups has been reported in

the literature, albeit driven by different underlying mechanisms. Price et al. (2019) argue physicians

may bear additional legal liability for disagreeing with AI recommendations. Because they are most

likely to disagree with AI for the most uncertain patient populations, they avoid using AI in these

cases to mitigate potential legal liability for using (but not following) AI. Dai and Singh (2020)

provide another mechanism that explains the same phenomenon; that is, physicians avoid using AI

when it is most needed to signal their inherent diagnostic abilities. In our model, physicians do not

face legal liability, nor do they have an incentive to signal their skills. Rather, the anchoring effect

is what reduces the informational benefit of obtaining additional information from AI to the extent

that it is optimal not to use it for the most uncertain patient populations. This effect provides a

novel mechanism for an important concern about the underuse of AI in medical decision making.

Our theoretical result, rooted in the psychological concept of anchoring, suggests physician-AI

collaboration may, in some instances, yield worse outcomes than physician decision-making alone.

Empirical evidence supports this finding: in a recent randomized clinical trial of 50 physicians (Goh

et al. 2024), the use of an AI chatbot failed to significantly improve diagnostic performance, largely

because physicians frequently dismissed the chatbot’s recommendations when they contradicted

their own initial diagnoses.

Finally, we analyze a real-world dataset of glaucoma patients to evaluate the benefits of incor-

porating prior probabilities and the anchoring effect in selecting optimal patient-specific pathways.

We use a probit model to predict the likelihood of glaucoma based on demographic and clinical

characteristics and compare the total expected costs of a missed diagnosis and unnecessary treat-

ment under three standard pathways: no AI, AI as a gatekeeper, or AI as a second opinion for all

patients. For low specialist sensitivity and high cost of a missed diagnosis, using a highly sensi-

tive AI as a second opinion can reduce costs by approximately 38%-68% relative to no AI and by
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23%-46% relative to AI as a gatekeeper. When the cost of a missed diagnosis equals unnecessary

treatment, using AI as a gatekeeper reduces costs by about 25%-45% relative to no AI and by 23%-

45% relative to AI as a second opinion. For specialists with high sensitivity, an indiscriminate AI

use can worsen performance, especially when the cost of a missed diagnosis is significantly higher

than the cost of unnecessary treatment.

Our research contributes to the growing effort to improve access to healthcare services in resource-

constrained settings by operationalizing AI-enhanced patient pathways. Similar to the approaches

explored by Olsder et al. (2023) in improving the availability of treatments for rare diseases through

outcome-based payment schemes, and by Lee et al. (2013), Mehta et al. (2016), and Chen et al.

(2021), among others, in facilitating large-scale healthcare delivery in rural areas through vehicle

management, our work aims to reduce the cost of access and improve the quality of healthcare. By

deploying AI as a gatekeeper or second opinion, we address critical gaps in healthcare efficiency and

provide practical pathways for integrating AI into routine medical decision-making, particularly

where healthcare resources are limited.

Our work also advances the understanding of the optimal sequencing of human and AI inter-

ventions in service operations, drawing a parallel to optimal design problems in supply chain and

service operations. Inspired by Lee and Tang (1997), who explore the intertemporal trade-offs of

product differentiation, we consider expedited versus delayed patient differentiation: using AI as

a gatekeeper leads to earlier patient classification, whereas using AI as a second opinion defers

this decision. We investigate the impact of different AI integration points on healthcare outcomes

and provide insights into how AI can be effectively embedded in healthcare workflows to improved

patient outcomes.

2. Literature

Our paper builds on and advances several streams of literature: sequencing and cognitive biases,

quantitative models of sequential decision-making, human-AI interaction, and service design. In

addition, our paper relates to the medical literature on the role of AI in clinical decision-making.

First, anchoring bias is among the most robust cognitive effects documented in psychology (Tver-

sky and Kahneman 1974). This bias occurs when decision-makers rely disproportionately on the

first piece of information (the “anchor”) when forming judgments, even when subsequent informa-

tion is available. Anchoring bias has been observed across diverse settings involving quantitative

judgments and is recognized as a key cognitive bias contributing to diagnostic errors in medical

decision-making (Ogdie et al. 2012). Kahneman and Miller (1986) introduce a norm theory in

which events are evaluated against a reference norm—a consolidation of past experiences. Events
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resembling the norm are perceived as unsurprising, with their evaluation anchored to this baseline.

Conversely, events that deviate markedly from the norm elicit surprise.

Anchoring bias is widely acknowledged in the medical community. Ly et al. (2023) provide

empirical evidence that emergency room physicians are influenced by the patient’s stated reason

for visit—information recorded prior to the physician’s evaluation—resulting in underdiagnosis of

conditions not mentioned in the initial presentation. Rastogi et al. (2022) explore the effects of

anchoring bias on diagnostic accuracy through experimental studies. Similarly, Bach et al. (2023)

qualitatively examine how anchoring bias manifests in clinical settings with the introduction of AI

support systems. To the best of our knowledge, this study is the first to investigate the impact of

anchoring bias on diagnostic decisions that involve both a specialist and a diagnostic tool.

Second, the literature has established a mathematical foundation for modeling sequential

decision-making. Jin et al. (2023) extend norm theory (Kahneman and Miller 1986) by modeling

the norm as a weighted average of the risk levels of previous patients. In their framework, physi-

cians adjust the risk assessment of a new patient relative to this norm. The adjustment varies with

the perceived difference between the anchor (norm) and the current case. Small differences result

in estimates positively correlated with the anchor, whereas large differences lead to overcompensa-

tion, producing negative correlations. Jin et al. (2023) validate their model using a large dataset,

providing empirical evidence of anchoring bias in the form of positive auto-correlation in physician

decisions. For instance, physicians were more likely to admit patients or order additional tests for

a current patient if they had done so for the previous one.

Lieder et al. (2012) develop and validate a Metropolis-Hastings model to describe the psycho-

logical process underlying probabilistic inference as a sequence of adjustments to an initial anchor

(anchoring-and-adjustment). In this model, adjustments that increase the estimate’s likelihood are

always accepted, while less probable adjustments are accepted with a probability proportional to

their posterior likelihood relative to the anchor.

Although Jin et al. (2023) and Lieder et al. (2012) propose distinct approaches—a risk/utility-

based model and a probabilistic choice/acceptance model, respectively—their core principle is

similar: adjustments significantly deviating from the anchor override it entirely, whereas smaller

deviations retain a strong residual influence of the anchor. Building on the Metropolis-Hastings

algorithm, our paper develops a tractable framework for modeling sequential diagnostic decision-

making.

Third, and most relevant to our work, the literature has examined human-AI interaction and re-

lated service-design principles; see Dai and Tayur (2022) for an overview of research opportunities in

this area. Studies typically focus on designing AI systems that account for human behavior (Grand-

Clèment and Pauphilet 2023), analyzing the interactive decision-making process (de Véricourt and
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Gurkan 2023), or triaging patient cases to determine whether AI or human physicians should han-

dle them (Dvijotham et al. 2023). For instance, Orfanoudaki et al. (2022) use surveys to identify

optimal designs for human-AI collaboration. However, empirical evidence highlights the challenges

of such collaboration. In a randomized clinical trial involving 50 physicians (Goh et al. 2024), AI

chatbot recommendations did not consistently improve diagnostic accuracy, because physicians

often disregarded suggestions that conflicted with their initial diagnoses.

Several recent papers shed new light on AI-augmented healthcare Adida and Dai (2024) inves-

tigate how different physician payment systems influence the use of confirmatory tests (or AI) in

healthcare diagnostics. Fügener et al. (2022) find human-AI collaboration is most effective when

AI delegates tasks to humans, but not vice versa. Similarly, Agarwal et al. (2024) study human-AI

collaboration in radiology, showing AI’s confident predictions enhance radiologists’ performance,

yet its performance declines when AI provides uncertain recommendations. Lai et al. (2024) explore

regulatory approaches for medical AI, emphasizing the strategic role of flexible oversight in en-

couraging compliance during algorithm retraining. Luan et al. (2024) analyze liability frameworks

addressing AI biases and find stringent liability can unintentionally lead to biased usage patterns

among healthcare providers. Mullainathan and Obermeyer (2021) highlight how systematic errors

in risk estimation can lead to both under-testing and over-testing, emphasizing the importance of

incorporating physician errors into decision models—a perspective consistent with our modeling

of anchoring bias. Dai and Singh (2024) examine how physicians’ liability concerns shape their

decisions to use AI in treatment planning, showing current liability frameworks can lead to both

overuse and underuse of AI. Whereas our research aligns with these studies, our focus differs:

we examine how anchoring bias affects the optimal sequencing of AI and specialists in diagnostic

workflows.

Our work also relates to the design and analysis of gatekeepers in service systems. The analytical

literature in this domain (see, e.g., Shumsky and Pinker 2003) focuses on the gatekeeper’s opti-

mal transfer (to the service expert) response to different incentive schemes and congestion levels.

Hathaway et al. (2023) empirically test the predictions (hypotheses) of such an analytical model.

Freeman et al. (2021) use data from visits to an emergency department (ED) to show a gatekeeping

unit (that decides patient discharge or admission to the hospital) reduces both unnecessary hospi-

talizations and wrongful patient discharges. To our best knowledge, we are the first to analytically

model the anchoring effect of using a gatekeeper and its implication for the quality of diagnosis

(overall missed diagnosis and unnecessary treatment). Further, we investigate the settings and

patient risk levels under which using a gatekeeper is beneficial.

Beyond healthcare, Balakrishnan et al. (2022) conduct laboratory experiments to investigate the

factors driving over- and under-adherence to algorithmic recommendations when humans possess
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private information. Cui et al. (2022) use field experiments on online platforms to compare supplier

pricing behavior when responding to human buyers versus AI-based chatbots. Our work is distinct

in both methodology and research focus, as we analyze and optimize the role of AI in patient

pathways, accounting for the cognitive impact of anchoring bias. Gurkan and de Véricourt (2022)

examine contracting and pricing decisions related to AI adoption, while Miao et al. (2024) provide

empirical evidence on how AI investment in human capital positively affect focal firms and generate

spillover benefits for their suppliers.

Our work also relates to the service operations literature on the optimal sequencing of activities

to maximize the total service utility of the customer under acclimation, memory decay, and higher

memorability of the peak event (Das Gupta et al. 2016, Li et al. 2022). Our work is distinct in

that we do not optimize for customer experience but rather for the costs of diagnostic errors under

service sequencing when the first outcome serves as an anchor for the final diagnosis.

Finally, our paper contributes to the medical AI literature, which increasingly focuses on scaling

AI in healthcare delivery (Abràmoff et al. 2024). Recent clinical trials and observational studies have

explored the real-world performance of AI in medical practice. For example, Mathenge et al. (2022),

in a randomized controlled trial in Rwanda, find that AI-supported DR screening with immediate

results increased referral adherence by 30% in the intervention group compared to the control group.

Ruamviboonsuk et al. (2019) report that a deep learning algorithm achieved significantly higher

sensitivity (0.97 vs. 0.74) and slightly lower specificity (0.96 vs. 0.98) than human graders for DR

screening. Xie et al. (2020) conduct a data-driven economic analysis demonstrating semi-automated

AI screening for DR is the most cost-effective compared to fully automated AI or physician-only

screening. Similarly, Wolf et al. (2020) and Ahmed et al. (2024) demonstrate autonomous AI

systems for DR screening can be both cost-saving and cost-effective for children with diabetes at the

individual patient and system levels. In a more recent randomized controlled trial in Bangladesh,

Abràmoff et al. (2023) show using an autonomous AI system as a triaging tool at an eye hospital

increases physician productivity by 40%. Relevant to our focus on AI as a second opinion, American

College of Radiology (2021) present a case study on the impact of AI in diagnosing and triaging

radiology images at a large medical center, highlighting improvements in workflows and radiologists’

learning. These findings motivate our exploration of how AI-generated diagnoses can augment

physicians’ diagnostic decision-making.

3. Model

We study sequential decision-making by AI and the specialist, where the final decision-maker,

the specialist, assimilates two independent pieces of information: the assessment of AI and the

specialist’s own independent assessment to make the final judgment.
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3.1. Anchoring and Adjustment

We use a two-step anchoring and adjustment model, as presented in Lieder et al. (2012), to cap-

ture the diagnostic decision-making under sequential and independent assessments by AI and a

specialist. For example, when AI is used as a gatekeeper, the patient is referred to a specialist

only if AI generates a positive screening result; in this scenario, AI’s diagnosis acts as an anchor

and the specialist’s diagnosis acts as an adjustment to the anchor. Conversely, when AI is used as

a second opinion, the specialist’s diagnosis is the anchor and AI’s diagnosis is the adjustment. If

the strength of the adjustment (the probability that the true condition aligns with the adjustment

given the anchor) is greater than the strength of the anchor (the probability that the true condition

aligns with the anchor given the adjustment), the adjustment is always accepted. Otherwise, the

acceptance probability of the adjustment is equal to the ratio of the strength of the adjustment to

the strength of the anchor.

We consider a two-step process whereby an initial diagnosis (the anchor) is followed by another

independent diagnosis (the adjustment). The acceptance probability of the adjustment x′ over the

anchor x is defined as

A(x′|x) =

1 if x′ = x

min
{

1, Pr(x′)Pr(x|x′)
Pr(x)Pr(x′|x)

}
if x′ 6= x

. (1)

Here, Pr(y) represents the probability of the true condition being y, and Pr(z|y) represents the

conditional probability of observing z given the true condition y. We refer to Pr(x′)Pr(x|x′) as the

strength of the adjustment and Pr(x)Pr(x′|x) as the strength of the anchor. The model anchor

influences the final decision as follows: when the adjustment equals the anchor, the anchor is

retained. However, when the anchor differs from the adjustment, it still overrides the adjustment

with a residual probability (equal to 1-acceptance probability).

Notably, (1) coincides with the Metropolis-Hastings algorithm (Hastings 1970, Lieder et al. 2012)

that has been used in the literature to capture the psychological process underlying probabilistic

inference as a sequence of adjustments to an initial guess. In our setting, the potential states are

denoted as {1,0}, representing positive and negative states, respectively. Let α and β denote the

sensitivity (probability of positive diagnosis when the true state is 1) and the specificity (probability

of negative diagnosis when the true state is 0), respectively.

Because the AI system and the specialist differ in their sensitivity (αAI , αS) and specificity

(βAI , βS), the probability P (z|y) of a diagnosis z given the true state y depends on whether the

diagnosis is made by the AI or the specialist. Table 1 presents the probabilities of the two true

states (y = 0,1) alongside the probabilities of positive and negative diagnoses by the AI and the

specialist for each state.
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True State (z) Diagnosis (y) P (z) P (y|z) with AI P (y|z) with Specialist

1 0 p 1−αAI 1−αS
1 1 p αAI αS

0 0 1− p βAI βS

0 1 1− p 1−βAI 1−βS
Table 1 Probabilities of true states and diagnoses by AI and the specialist.

Example 1. Suppose AI first generates a positive diagnosis, and then the specialist generates

a negative diagnosis. The acceptance probability of the specialist’s negative diagnosis is using (1),

A(S = 0|AI = 1) = min

{
1,

(1− p)(1−βAI)
p(1−αS)

}
.

The acceptance probability is higher for smaller values of p, indicating a lower prior probability

that the patient has the condition. In addition, a higher value of αS, implying the specialist rarely

misdiagnoses positive cases, increases the acceptance probability. Conversely, a higher βAI value,

implying AI rarely gives false-positive diagnoses, decreases the acceptance probability. Similarly, we

can obtain the acceptance probabilities A(S = 1|AI = 0), A(AI = 0|S = 1), and A(AI = 1|S = 0)

(see the appendix).

3.2. How Anchoring and Adjustment Make Sequencing Matter

Under the anchor-adjustment model, the sequence in which diagnoses are made by AI and/or the

specialist influences the likelihood of receiving a positive or negative diagnosis.

Example 2. Consider a case where AI gives a positive diagnosis but the specialist gives a

negative diagnosis. Under the anchoring and adjustment model, the probability of the final diagnosis

depends on whether the patient saw AI or the specialist first.

• AI as a gatekeeper (AI first): The probability of retaining AI’s initial positive diagnosis over

a second negative diagnosis by the specialist is

1−min

{
1,

(1− p)(1−βAI)
p(1−αS)

}
.

• AI as a second opinion (specialist first): The probability of accepting a positive diagnosis by

AI after an initial negative diagnosis by the specialist is

min

{
1,

p(1−αS)

(1− p)(1−βAI)

}
.

In Example 2, consider a case where the independent diagnoses by the AI and the specialist are

positive and negative, respectively, and (1−p)(1−βAI )
p(1−αS)

> 1, which holds when p < (1−βAI )
(1−βAI )+(1−αS)

. Under

these conditions, the probability of a positive diagnosis is zero when the AI acts as a gatekeeper.

In contrast, when the AI provides a second opinion, the probability of a positive diagnosis is
p(1−αS)

(1−p)(1−βAI )
.
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3.3. Model Limitations

Our model assumes the diagnoses made by the specialist and AI are independent of the prior. This

assumption, though potentially counterintuitive in extreme cases, proves analytically useful. For

example, if p = 0 (indicating no probability of disease), the specialist could still make a positive

diagnosis with probability 1−βS. Similarly, if p= 1, the specialist could give a negative diagnosis

with probability 1−αS. However, we contend that in scenarios with extremely low or high priors,

the question of diagnosis—and consequently the optimal clinical path for the patient—becomes

largely irrelevant and thus beyond the scope of our paper.

A more realistic assumption would posit that the prior p ensures the specialist’s diagnosis aligns

with economic rationality under Bayesian posterior beliefs. Specifically, if the specialist makes

a positive diagnosis, their posterior belief would justify flagging the disease as present as the

“economically” optimal decision. Similarly, a negative diagnosis would correspond to a posterior

belief that makes it “economically” optimal to conclude the disease is absent. Equivalently,

pαS
pαS + (1− p)(1−βS)

CM ≥
(1− p)(1−βS)

pαS + (1− p)(1−βS)
CT ⇐⇒ p≥ (1−βS)CT

αSCM + (1−βS)CT
,

p(1−αS)

p(1−αS) + (1− p)βS
CM ≤

(1− p)βS
p(1−αS) + (1− p)βS

CT ⇐⇒ p≤ βSCT
(1−αS)CM +βSCT

.

If we impose the same restrictions on AI, we obtain

¯
p≤ p≤ p̄,

¯
p= max

{
(1−βAI)CT

αAICM + (1−βAI)CT
,

(1−βS)CT
αSCM + (1−βS)CT

}
,

p̄= min

{
βAICT

(1−αAI)CM +βAICT
,

βSCT
(1−αS)CM +βSCT

}
.

This regime implies both the specialist and the AI declare positive outcomes as positive and

negative outcomes as negative, consistent with their Bayesian posterior beliefs. We argue imposing

these restrictions on the prior p does not alter the qualitative insights derived from our analysis.

Furthermore, if 1−βS
αS

and 1−βAI
αAI

are sufficiently small, and 1−αS
βS

and 1−αAI
βAI

are similarly small, the

range of p satisfying p≤ p≤ p̄ spans nearly the entire interval (0,1).

4. Optimal Patient Pathway Design with AI

The use of AI in a healthcare delivery system has been proposed in two possible configurations—as

a gatekeeper (to selectively refer patients to the specialist) or as a second opinion (to confirm or

refute the specialist’s diagnosis). The potential benefit of the first approach is to reduce the cost

of specialist consultation, especially in the presence of capacity constraints. The potential benefit

of the second approach is improved accuracy. Despite the potential benefits of AI, the perceived
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risks of missed diagnoses and unnecessary treatment due to AI act as barriers to the adoption of

AI. Section 4.1 and Section 4.2 analyze these risks when using AI as a gatekeeper and as a second

opinion, respectively. Section 4.3 compares both strategies (and the case without AI) to derive the

condition for each strategy to be the least risky. For the remainder of the paper, we assume both

AI and the specialist are imperfect (αS, βS, αAI , βAI < 1).

4.1. AI as a Gatekeeper

A key concern with using AI as a gatekeeper is its potential to restrict certain patients’ access

to specialists, thereby increasing missed diagnoses. At the same time, AI as a gatekeeper could

reduce unnecessary consultations and treatments. Proposition 1 demonstrates that whereas AI

as a gatekeeper may increase the probability of missed diagnoses in certain scenarios, it can,

counterintuitively, reduce the probability of missed diagnoses in others.

Proposition 1 If αAI ≤ αS, then for all priors p, AI as a gatekeeper has a higher probability of

a false-negative diagnosis (missed diagnosis) than the specialist alone. Otherwise, if αAI > αS, a

threshold τGM ∈ (0,1] exists:

τGM =
(1−βAI)

(1−βAI) + (1− αS
αAI

)
.

1. AI as a gatekeeper reduces the overall probability of a false-negative diagnosis (missed diagno-

sis) if and only if p∈ (τGM ,1].

2. AI as a gatekeeper increases the overall probability of a missed diagnosis for all priors p ∈

[0, τGM).

3. The threshold τGM is increasing in αS but decreasing in αAI and βAI .

For a given prior p, the probability of a missed diagnosis when the patient is seen only by the

specialist, denoted P 0
M(p), is the probability that the patient has the disease and the specialist

provides a negative diagnosis; that is,

P 0
M(p) = p(1−αS). (2)

In a gatekeeper AI system, a missed diagnosis can occur in two ways: (1) AI misdiagnoses a positive

case as negative, or (2) AI correctly identifies a positive case, but the specialist subsequently

makes a false-negative diagnosis and overrides AI’s positive diagnosis. The probability of a missed

diagnosis with AI as a gatekeeper is

PG
M(p) = p(1−αAI) + pαAI(1−αS)min

{
1,

(1− p)(1−βAI)
p(1−αS)

}
,
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which simplifies to:

PG
M(p) =

p(1−αAIαS) if p≤ (1−βAI )
(1−βAI )+(1−αS)

,

p(1−αAI) + (1− p)αAI(1−βAI) otherwise.
(3)

The use of AI as a gatekeeper introduces two competing effects. First, it can increase the number

of false negatives (missed diagnoses) beyond those made by the specialist alone. Second, it can

reduce missed diagnoses by correcting some of the specialist’s errors, as AI’s positive diagnosis

serves as an anchor that influences the specialist’s decision-making. The dominance of these effects

depends on AI’s sensitivity (αAI) and the prior (p). If αAI ≤ αS, AI will not reduce missed diagnoses,

because the first effect dominates. When αAI >αS and the prior p is small, the specialist is more

likely to disregard AI’s positive diagnosis (see Example 2). However, as p increases, a positive

diagnosis from AI becomes a stronger anchor, making the specialist less likely to uphold a negative

diagnosis. In this case, the second effect dominates, leading to fewer missed diagnoses.

The strength of this anchoring effect relative to the adjustment depends on AI’s specificity and

the specialist’s sensitivity. The viable region where gatekeeper AI can reduce missed diagnoses

expands with higher AI specificity (fewer false-positives) and decreases with the specialist’s sensi-

tivity (fewer false negatives). Additionally, the viable region grows as AI’s sensitivity αAI increases,

because higher sensitivity lowers the probability of AI incorrectly screening out positive cases.

Next, we show that, contrary to expectation, AI as the gatekeeper may increase the overall

probability of a false-positive diagnosis and may thus lead to unnecessary treatment.

Proposition 2 If βAI ≥ βS, AI as a gatekeeper decreases or maintains the probability of a false-

positive diagnosis (unnecessary treatment) across all priors p. Conversely, if βAI <βS, a threshold

τGT ∈ (0,1] exists:

τGT =
(1−βAI)2

(1−βAI)2 + (1−αS)(1− βAI
βS

)
.

1. Using AI as a gatekeeper increases the probability of a false-positive diagnosis for all priors

p∈ (τGT ,1].

2. Using AI as a gatekeeper reduces the probability of a false-positive diagnosis for all priors

p∈ [0, τGT ].

3. The threshold τGT increases with αS but decreases with βS. It decreases with βAI if βAI < 2βS−1,

and increases with βAI otherwise.

For a given prior p, the probability of unnecessary treatment when the patient is seen only by the

specialist, denoted P 0
T (p), is the probability that the patient does not have the disease and the

specialist provides a positive diagnosis

P 0
T (p) = (1− p)(1−βS). (4)
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Under a gatekeeper AI system, unnecessary treatment can occur in two scenarios: (1) when both

AI and the specialist incorrectly diagnose a negative case as positive, or (2) when AI incorrectly

diagnoses a negative case as positive, and the specialist correctly diagnoses it as negative but

retains AI’s initial positive diagnosis. The overall probability of unnecessary treatment with AI as

a gatekeeper is:

PG
T (p) = (1− p)(1−βAI)(1−βS) + (1− p)(1−βAI)βS

(
1−min

{
1,

(1− p)(1−βAI)
p(1−αS)

})
,

which simplifies to

PG
T (p) = (1− p) ·

(1−βAI)(1−βS) if p≤ (1−βAI )
(1−βAI )+(1−αS)

,

(1−βAI)(1−βS) + (1−βAI)βS
(

1− (1−p)(1−βAI )
p(1−αS)

)
otherwise.

(5)

For low values of p, the specialist’s negative diagnosis acts as a strong adjustment, using AI as a

gatekeeper reduces unnecessary treatments. This occurs because negative cases incorrectly flagged

as positive by AI are likely to be overturned by the specialist’s negative diagnosis when p is low.

The larger the threshold τGT , the broader the set of prior values p for which AI as a gatekeeper

reduces unnecessary treatment. Interestingly, the region where gatekeeper AI reduces unnecessary

treatment expands with αS (the specialist’s sensitivity) and contracts with βS (the specialist’s

specificity). This result contrasts with the intuition that the region should expand as AI’s specificity

increases. However, initially, the region contracts as βAI increases until βAI reaches a sufficiently

high value (approximately 2βS − 1), after which the region expands as βAI increases further.

4.2. AI as a Second Opinion

Intuitively, using AI as a second opinion after the specialist has made an independent diagnosis

offers a potential way to reduce the risk of both missed diagnoses and unnecessary treatments.

However, as Propositions 3 and 4 show below, whereas AI as a second opinion can deliver its

anticipated benefits in certain scenarios, it may have the opposite effect in others.

Proposition 3 A threshold τSM exists such that AI as a second opinion increases the probability of

missed diagnoses for all p∈ [0, τSM) and reduces (or maintains) the probability of missed diagnoses

for all p∈ [τSM ,1]:

τSM =


αS(1−αAI )(1−βAI )

αAI (1−αS)2+αS(1−αAI )(1−βAI )
if αS ≤ αAI and 0≤ 1−βAI

1−βS
≤ αAI (1−αS)2

αS(1−αAI )2

αS(1−βS)
αS(1−βS)+αAI (1−αS)

if αS >αAI and 0≤ 1−βAI
1−βS

≤ αS
αAI√

αS(1−βS)(1−βAI )√
αS(1−βS)(1−βAI )+

√
αAI (1−αS)2

otherwise.

Remark 1. Even when AI performs worse than the specialist in both dimensions (αAI < αS

and βAI < βS), using AI as a second opinion can reduce the probability of a missed diagnosis. By

contrast, AI as a gatekeeper reduces the probability of a missed diagnosis only when αAI >αS.
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The probability of a missed diagnosis when the patient only sees the specialist is P 0
M(p) =

p(1−αS). When AI is used as a second opinion, a missed diagnosis can occur in three situations:

(i) if both the specialist and AI incorrectly diagnose the patient as negative; (ii) if the specialist

correctly diagnoses a positive case as positive but AI misdiagnoses it as negative, and the specialist

accepts AI’s incorrect diagnosis; or (iii) if the specialist incorrectly diagnoses a positive case as

negative and AI correctly identifies it as positive, but the specialist maintains their original negative

diagnosis.

The probability of a missed diagnosis when AI is used as a second opinion is

P S
M(p) =p(1−αS)(1−αAI) + pαS(1−αAI)min

{
1,

(1− p)(1−βS)

p(1−αAI)

}
+ p(1−αS)αAI

(
1−min

{
1,

p(1−αS)

(1− p)(1−βAI)

})
. (6)

Furthermore,

min

{
1,

(1− p)(1−βS)

p(1−αAI)

}
=

1 if p≤ 1−βS
(1−αAI )+(1−βS)

(1−p)(1−βS)
p(1−αAI )

if p > 1−βS
(1−αAI )+(1−βS)

, and

min

{
1,

p(1−αS)

(1− p)(1−βAI)

}
=


p(1−αS)

(1−p)(1−βAI )
if p≤ 1−βAI

(1−αS)+(1−βAI )
,

1 if p > 1−βAI
(1−αS)+(1−βAI )

.

If 1−βAI
(1−αS)+(1−βAI )

≤ 1−βS
(1−αAI )+(1−βS)

,

P S
M(p) =


[p(1−αSαAI)− p2αAI (1−αS)2

(1−p)(1−βAI )
] if p≤ 1−βAI

(1−αS)+(1−βAI )
,

p(1−αAI) if 1−βAI
(1−αS)+(1−βAI )

< p< 1−βS
(1−αAI )+(1−βS)

,

[p(1−αS)(1−αAI) + (1− p)αS(1−βS)] if p≥ 1−βS
(1−αAI )+(1−βS)

.

(7)

The complementary case (i.e., 1−βAI
(1−αS)+(1−βAI )

> 1−βS
(1−αAI )+(1−βS)

) follows similarly:

P S
M(p) =


[p(1−αSαAI)− p2αAI (1−αS)2

(1−p)(1−βAI )
] if p≤ 1−βS

(1−αAI )+(1−βS)
,

[p(1−αS)− p2αAI (1−αS)2
(1−p)(1−βAI )

+ (1− p)αS(1−βS)] if 1−βS
(1−αAI )+(1−βS)

< p< 1−βAI
(1−αS)+(1−βAI )

,

[p(1−αS)(1−αAI) + (1− p)αS(1−βS)] if p≥ 1−βAI
(1−αS)+(1−βAI )

.

(8)

For small prior values of p, the strength of the adjustment exceeds that of the anchor, making

the adjustment more likely to be accepted. As a result, using AI as a second opinion may increase

missed diagnoses when priors are low. However, in cases where the specialist initially misdiagnoses

a positive case as negative and AI correctly identifies it as positive, the specialist may still adhere

to their original diagnosis. This is particularly likely when the prior is low, as the adjustment from

AI has a weaker influence compared to the anchor.

The following proposition outlines the condition under which using AI as a second opinion helps

reduce overtreatment:
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Proposition 4 A threshold τST ∈ (0,1) exists such that AI as a second opinion reduces or main-

tains the probability of unnecessary treatment for all p ∈ [0, τST ] and increases the probability of

unnecessary treatment for all p∈ (τST ,1]:

τST =


βAI (1−βS)

βAI (1−βS)+βS(1−αS)
if βS >βAI and 0≤ 1−αAI

1−αS
≤ βS

βAI

(1−βS)2βAI
(1−βS)2βAI+βS(1−βAI )(1−αAI )

if βS ≤ βAI and 0≤ 1−αAI
1−αS

≤ βAI (1−βS)2

βS(1−βAI )2√
(1−βS)2βAI√

(1−βS)2βAI+
√

(1−αAI )(1−αS)βS
otherwise.

The probability of unnecessary treatment when the patient only sees the specialist is (1−p)(1−

βS). When AI is used as a second opinion, unnecessary treatment occurs when a negative case is

misdiagnosed as positive and treated unnecessarily, which can happen in the following cases: (i)

Both the specialist and AI give a positive diagnosis; (ii) the specialist gives a positive diagnosis

and AI gives a negative diagnosis, but the specialist retains their original positive diagnosis; or

(iii) the specialist gives a negative diagnosis and AI gives a positive diagnosis, with the specialist

accepting AI’s positive diagnosis. The overall probability of unnecessary treatment when AI is used

as a second opinion is given by

P S
T (p) =(1− p)(1−βS)(1−βAI) + (1− p)(1−βS)βAI

(
1−min

{
1,

(1− p)(1−βS)

p(1−αAI)

})
+ (1− p)βS(1−βAI)min

{
1,

p(1−αS)

(1− p)(1−βAI)

}
. (9)

If 1−βAI
1−βAI+1−αS

≤ 1−βS
1−βS+1−αAI

,

P S
T (p) =


(1− p)(1−βS)(1−βAI) + p(1−αS)βS if p≤ 1−βAI

1−βAI+1−αS
,

(1− p)(1−βAI) if 1−βAI
1−βAI+1−αS

< p< 1−βS
1−βS+1−αAI

,

(1− p)(1−βAI) + (1− p)(1−βS)βAI − (1−p)2(1−βS)2βAI
p(1−αAI )

if p≥ 1−βS
1−βS+1−αAI

.

(10)

Alternately, if 1−βAI
1−βAI+1−αS

> 1−βS
1−βS+1−αAI

,

P S
T (p) =


(1− p)(1−βS)(1−βAI) + p(1−αS)βS if p≤ 1−βS

1−βS+1−αAI
,

(1− p)(1−βS) + p(1−αS)βS − (1−p)2(1−βS)2βAI
p(1−αAI )

if 1−βS
1−βS+1−αAI

< p< 1−βAI
1−βAI+1−αS

,

(1− p)(1−βAI) + (1− p)(1−βS)βAI − (1−p)2(1−βS)2βAI
p(1−αAI )

if p≥ 1−βAI
1−βAI+1−αS

.

(11)

4.3. The Optimal AI Strategy

We consider an altruistic system planner who wants to use AI to minimize missed diagnoses as well

as unnecessary treatments. The results in Sections 4.1 and 4.2 show that whether AI is helpful in
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reducing missed diagnoses or unnecessary treatments depends on the prior probability, p, of whether

the patient has the disease. Suppose the cost incurred by a patient due to a missed diagnosis is

CM and the cost incurred due to an unnecessary treatment is CT , and the system planner wants

to minimize the total expected cost of a missed diagnosis and unnecessary treatment for a prior

p. For simplicity, assume the prior p captures the prevalence of the disease.1 We investigate the

optimal AI strategy for the system planner by answering the following questions:

1. For what values of p is using AI as a gatekeeper the optimal strategy?

2. For what values of p is using AI as a second opinion the optimal strategy?

3. Is it always optimal to use AI, either as a gatekeeper or as a second opinion, even if it is

costless?

For a prior p, the total expected cost of a missed diagnosis and unnecessary treatment under no

AI, AI as a gatekeeper, and AI as a second opinion are, respectively,

C0(p) =CMp(1−αS) +CT (1− p)(1−βS), (12)

CG(p) =CMP
G
M(p) +CTP

G
T (p), and

CS(p) =CMP
S
M(p) +CTP

S
T (p).

Substituting the values of PG
M(p) and PG

T (p) yields

CG(p) =

CMp(1−αAIαS) +CT (1− p)(1−βAI)(1−βS) if p≤ p1
CM (1−αS)(1−αAI )p2+(CMαAI+CT )(1−βAI )(1−αS)p(1−p)−CT βS(1−βAI )2(1−p)2

p(1−αS)
if p > p1

, (13)

where

p1 =
(1−βAI)

(1−βAI) + (1−αS)
.

We make the following assumption:

Assumption 1 (1−αAI)(1−βAI)≤ (1−αS)(1−βS)

Under Assumption 1, p1 ≤ p2, and the total expected cost under AI as a second opinion is

CS(p) =
(1−p)2[CT (1−βS)(1−βAI )2]+p(1−p)[CM (1−βAI )(1−αAIαS)+CT βS(1−αS)(1−βAI )]−p2αAI (1−αS)2CM

(1−p)(1−βAI )
if p≤ p1

CMp(1−αAI) +CT (1− p)(1−βAI) if p1 < p< p2
CM (1−αS)(1−αAI )2p2+(1−αAI )(CMαS(1−βS)+CT (1−βSβAI ))p(1−p)−CT βAI (1−βS)2(1−p)2

p(1−αAI )
if p≥ p2

,

(14)

1 To generate sharp managerial insights, we assume both the specialist and AI to be costless. Equivalently, we assume

the system designed is solely concerned about the well-being of the patient rather than the costs of consultation.
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where

p1 =
(1−βAI)

(1−βAI) + (1−αS)
and p2 =

(1−βS)

(1−βS) + (1−αAI)
.

Gatekeeper AI vs. No AI. First, we investigate the optimal strategy with using AI as a gate-

keeper. Specifically, we find priors where using AI as a gatekeeper has a lower total expected

cost of a missed diagnosis and unnecessary treatment than when AI is not used. Substituting the

expressions from eqs. (12) and (13) yields

CG(p)−C0(p) =

g1(p) if p≤ p1,

g2(p) if p > p1.

where

g1(p) =CMp(1−αAI)αS −CT (1− p)βAI(1−βS), and

g2(p) =CMp(αS −αAI) +CM(1− p)αAI(1−βAI)

−CT (1− p)βAI(1−βS) +CT (1− p)(1−βAI)βS
(

1− (1− p)(1−βAI)
p(1−αS)

)
.

When the prior is small (p≤ p1), the gatekeeper AI’s positive signal has no anchoring effect. The

net expected cost difference between using AI as a gatekeeper and not using AI (g1(p)) is driven

by two factors: the expected increase in the cost of a missed diagnosis with AI and the expected

reduction in unnecessary treatments with AI. The increase in missed diagnosis cost is captured by

(1−αAI)αS, representing the probability that AI misses a positive case that the specialist would

have caught. The reduction in unnecessary treatment cost is captured by βAI(1−βS), representing

the probability that AI correctly screens out a negative case that the specialist would have falsely

declared as positive. Further,

g1(p)≤ 0 ⇐⇒ p≤ τaG =
CTβAI(1−βS)

CM(1−αAI)αS +CTβAI(1−βS)
.

When the prior is sufficiently high (p > p1), the anchoring effect also comes into play. Anchoring

to the positive signal from the gatekeeper AI can, on one hand, help reduce missed diagnoses by

influencing the specialist’s decision. On the other hand, it can also lead to an increase in unnecessary

treatments.

Let D = (CMαAI(1− βAI) +CT (βS − βAI))2(1−αS)2 + 4CMCTβS(1− βAI)2(αS −αAI)(1−αS).

Suppose αS 6= αAI . For D≥ 0,

g2(p)≤ 0 ⇐⇒ (αS −αAI)(p− τ bG)(p− τ cG)≤ 0,
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where

τ bG =

√
D− (1−αS)(CMαAI(1−βAI) +CT (βS −βAI))√

D− (1−αS)(CMαAI(1−βAI) +CT (βS −βAI)) + 2CM(αS −αAI)(1−αS)

τ cG =

√
D+ (CMαAI(1−βAI) +CT (βS −βAI))(1−αS)√

D+ (CMαAI(1−βAI) +CT (βS −βAI) + 2CM(αAI −αS))(1−αS)
. (15)

For D ≥ 0 and αS < αAI , the use of AI as a gatekeeper reduces the total cost for low and high

prior probabilities. Conversely, for D≥ 0 and αS >αAI , AI as a gatekeeper reduces the total cost

for intermediate priors. When D < 0 and αS < αAI , g2(p) < 0 for all p ∈ [0,1], meaning AI as a

gatekeeper reduces the total cost across all prior probabilities. By contrast, for D< 0 and αS >αAI ,

g2(p)> 0 for all p∈ [0,1], indicating AI as a gatekeeper increases the total cost for all priors.

Proposition 5 (Gatekeeper AI vs. No AI) Suppose βS ≥ βAI . The following conditions de-

termine when AI as a gatekeeper yields a lower or equal total expected cost of a missed diagnosis

and unnecessary treatment compared to the case in which AI is not used:

1. If αS < αAI and CM
CT
≥ βAI (1−αS)(1−βS)

αS(1−αAI )(1−βAI )
, D ≥ 0, and 0 ≤ τaG ≤ τ cG ≤ 1, and the total expected

cost under AI as a gatekeeper is less than or equal to that under no AI for all priors p ∈

[0, τaG]∪ [τ cG,1].

2. If αS <αAI and D ≥ 0, the total expected cost under AI as a gatekeeper is less than or equal

to that under no AI for all priors p∈ [0, τ bG]∪ [τ cG,1], provided that either αAI +αAIαS−2αS ≤

0 or αAI + αAIαS − 2αS > 0 and CM
CT

< min
{

βAI (1−αS)(1−βS)
αS(1−αAI )(1−βAI )

, (βS−βAI )(1−αS)
αAI+αAIαS−2αS

}
. Under these

conditions, the thresholds 0≤ τ bG ≤ τ cG ≤ 1 ensure that AI as a gatekeeper is cost-effective within

the specified prior intervals.

3. If αS < αAI , D ≥ 0, (αAI + αAIαS − 2αS) > 0, and (βS−βAI )(1−αS)
αAI+αAIαS−2αS

≤ CM
CT
≤ βAI (1−αS)(1−βS)

αS(1−αAI )(1−βAI )
,

or if αS <αAI , D< 0, and CM
CT

< βAI (1−αS)(1−βS)
αS(1−αAI )(1−βAI )

, then the total expected cost under AI as a

gatekeeper is less than or equal to that under no AI for all priors p∈ [0,1].

4. If αS > αAI > 0, then D > 0 and τ cG ≤ 0≤ τ bG ≤ 1, and CM
CT

< βAI (1−αS)(1−βS)
αS(1−αAI )(1−βAI )

, then the total

expected cost under AI as a gatekeeper is less than or equal to that under no AI for all priors

p ∈ [0, τ bG]. Otherwise, if CM
CT
≥ βAI (1−αS)(1−βS)

αS(1−αAI )(1−βAI )
, then 0 ≤ τaG ≤ 1, and the total expected cost

under AI as a gatekeeper is less than or equal to that under no AI for all priors p∈ [0, τaG].

Propositions 1 and 2 show AI as a gatekeeper is useful for high priors to reduce missed diagnoses

(only if αAI > αS) and for low priors to reduce unnecessary treatment. Therefore, optimizing for

both missed diagnosis and unnecessary treatment leads to using as a gatekeeper for low and high

priors (for αAI >αS), as shown in Proposition 5 (see Table A4 for the full characterization of the

results of Proposition 5).
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Intriguingly, even when AI is both less sensitive and less specific than the specialist, using AI as

a gatekeeper to reduce unnecessary treatments for low priors may still be optimal. On the other

hand, if AI’s sensitivity is significantly higher than that of the specialist, using AI as a gatekeeper

becomes optimal for all priors.

Remark 2. In the absence of anchoring, where only the adjustment (the second diagnosis) is

retained, the prior threshold below which AI as a gatekeeper has a lower total expected cost of a

missed diagnosis and unnecessary treatment than no AI is given by τaG = CT βAI (1−βS)
CM (1−αAI )αS+CT βAI (1−βS)

.

The value of τaG increases with CTβAI(1 − βS), which represents the savings in the cost of un-

necessary treatment when AI correctly provides a negative diagnosis (with probability βAI) but

the specialist gives a false-positive diagnosis (with probability 1− βS). As this savings grows, the

range of priors for which AI as a gatekeeper outperforms no AI widens. Conversely, τaG decreases

with CM(1−αAI)αS, which captures the increased cost of a missed diagnosis when AI incorrectly

provides a negative diagnosis (with probability 1−αAI) while the specialist correctly identifies a

positive diagnosis (with probability αS). A higher value of this term narrows the range of priors

for which AI as a gatekeeper dominates no AI.

The prior threshold above which the anchoring effect exists when AI is used as a gatekeeper is

given by p1 = 1−βAI
1−βAI+1−αS

. This threshold decreases as βAI increases, indicating that as AI becomes

more specific, the range of priors where the specialist is anchored to AI’s positive diagnosis expands.

Conversely, p1 increases with αS, showing that as the specialist becomes more sensitive, the range

of priors where the specialist is anchored to AI’s positive diagnosis contracts.

The condition CM
CT
≥ βAI (1−αS)(1−βS)

αS(1−αAI )(1−βAI )
is equivalent to the requirement that τaG ≤ p1. This finding

implies that when the cost of a missed diagnosis is sufficiently higher than the cost of unnecessary

treatment, a range of priors exists, including [τaG, p1], where the anchoring effect of AI’s positive

diagnosis does not manifest, and no AI outperforms AI as a gatekeeper. Similarly, for D> 0 and

αS <αAI , the condition CM(αAI +αAIαS − 2αS)<CT (βS −βAI)(1−αS) guarantees the existence

of a range of priors where, even when the anchoring effect is present, no AI dominates AI as a

gatekeeper. This condition holds when the difference in specificities (βS −βAI) is sufficiently large

or when the difference in sensitivities (αAI −αS) is sufficiently small.

Lemma 1 The expected cost of a missed diagnosis under AI as a gatekeeper is greater than or

equal to the expected cost of a missed diagnosis under AI as a second opinion, that is, for CT = 0,

CG(p)≥CS(p) for all priors p∈ [0,1].

Using AI as a second opinion provides more opportunity to reduce missed diagnoses by allowing

the specialist to overrule a negative diagnosis by AI.
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Lemma 2 The expected cost of unnecessary treatment under AI as a second opinion is greater

than or equal to the expected cost of unnecessary treatment under AI as a gatekeeper for all priors

p∈ [0,1].

Using AI as a gatekeeper offers greater potential to reduce unnecessary treatments by effectively

screening out negative cases upfront.

Given the importance of reducing missed diagnoses for high priors and minimizing unnecessary

treatments for low priors, the above lemmas suggest it may be optimal to employ AI as a gatekeeper

for low priors and as a second opinion for high priors. The next result formalizes this intuition.

Proposition 6 If βS >βAI , (1−αAI)(1−βAI)≤ (1−αS)(1−βS), βAI <αS +αAI and CM ≥CT , a

threshold τGS exists such that the total expected cost of a missed diagnosis and unnecessary treatment

under AI as a second opinion is less than or equal to that under AI as a gatekeeper for all priors

p in [τGS ,1] :

τGS =


CT βS(1−βAI )

CT βS(1−βAI )+CMαAI (1−αS)
for CM

CT
> βS(1−αAI )(1−βAI )

αAI (1−αS)(1−βS)
,[

CT βAI (1−βS)+CM (αS(1−βS)−αAI (1−βAI )
]
(1−αS)+

√
D′[

CT βAI (1−βS)+CM (αS(1−βS)−αAI (1−βAI )+2αS(1−αAI ))
]
(1−αS)+

√
D′

for CM
CT
≤ βS(1−αAI )(1−βAI )

αAI (1−αS)(1−βS)

where D′ =
[
(CTβAI + CMαS)(1− βS)− CMαAI(1− βAI)

]2
(1− αS)2 + 4CMCTαS(1− αS)

[
βS(1−

βAI)
2(1−αAI)− βAI(1− βS)2(1−αS)

]
such that CM

CT
≤ βS(1−αAI )(1−βAI )

αAI (1−αS)(1−βS)
=⇒ D′ ≥ 0. In both cases

0≤ τGS ≤ 1.

Table A5 provides a full characterization of the results of Proposition 6. In the proposition, the

assumption (1−αAI)(1−βAI)≤ (1−αS)(1−βS) ensures AI is not worse than the specialist in both

sensitivity and specificity. For instance, if βS ≥ βAI , it must follow that αS ≤ αAI . This condition

also implies the prior threshold p1 = 1−βAI
1−βAI+1−αS

, above which the anchoring effect of AI’s positive

diagnosis exists, is less than or equal to the prior threshold p2 = 1−βS
1−βS+1−αAI

, which represents the

threshold above which the anchoring effect of the specialist’s positive diagnosis exists. Consequently,

when making the final decision, the specialist is anchored to AI’s initial positive diagnosis over a

wider range of priors than they are to their own initial positive diagnosis.

In the absence of the anchoring effect of the specialist’s positive diagnosis, AI as a sec-

ond opinion outperforms AI as a gatekeeper for all priors greater than the threshold τGS =

CT βS(1−βAI )
CT βS(1−βAI )+CMαAI (1−αS)

. The value of τGS increases with CTβS(1− βAI), which represents the in-

creased cost of unnecessary treatment caused by AI when the specialist correctly provides a negative

diagnosis (with probability βS) but AI incorrectly provides a positive diagnosis (with probability

1−βAI). As this cost grows, the range of priors where AI as a second opinion outperforms AI as a

gatekeeper narrows. Conversely, τGS decreases with CMαAI(1−αS), which reflects the reduction in
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the cost of a missed diagnosis due to AI when the specialist wrongly provides a negative diagnosis

(with probability 1−αS) but AI correctly provides a positive diagnosis (with probability αAI). A

higher value of this term widens the range of priors where AI as a second opinion outperforms AI

as a gatekeeper.

The condition CM
CT

> βS(1−αAI )(1−βAI )
αAI (1−αS)(1−βS)

is equivalent to τGS < p2. This indicates the existence of a

range of priors, specifically [τGS , p2], where AI as a second opinion outperforms AI as a gatekeeper,

even in the absence of the anchoring effect of the specialist’s positive diagnosis. Conversely, if

CM
CT
≤ βS(1−αAI )(1−βAI )

αAI (1−αS)(1−βS)
, a range of priors exists where AI as a gatekeeper outperforms AI as a second

opinion, even when the anchoring effect of the specialist’s positive diagnosis is present.

The next result, derived from Propositions 5 and 6, establishes that when the cost of a missed

diagnosis (CM) is significantly higher than the cost of unnecessary treatment (CT ), intermediate

priors (i.e., high-uncertainty cases) exist where the no-AI option (i.e., not using AI) results in a

lower expected cost of missed diagnoses and unnecessary treatments compared to using AI as a

gatekeeper or as a second opinion. By contrast, when CM and CT are comparable, it is always

optimal to use AI—as a gatekeeper for low priors and as a second opinion for high priors.

Proposition 7 Consider the values D, τaG, τ bG, τ cG, and τGS as defined in Propositions 5 and 6.

Suppose the conditions βS > βAI , βAI <αS +αAI , and (1−αAI)(1− βAI)≤ (1−αS)(1− βS) hold.

The following strategies describe the optimal use of AI in clinical decision-making:

1. Gatekeeper AI for low priors, no AI for intermediate priors, and second-opinion AI for high

priors: If αAIβAI(1−αS)(1−βS)<αSβS(1−αAI)(1−βAI) and

CM
CT

>max

{
1,
βS(1−αAI)(1−βAI)
αAI(1−αS)(1−βS)

,
βAI(1−αS)(1−βS)

αS(1−αAI)(1−βAI)
,
βS
αAI

}
,

where τaG < τ
G
S ≤ τ cG, the optimal strategy is:

• For all priors p∈ [0, τaG], AI as a gatekeeper is optimal.

• For all priors p∈ [τaG, τ
G
S ], no AI is optimal.

• For all priors p∈ [τGS ,1], AI as a second opinion is optimal.

2. Using AI is optimal for all priors—as a gatekeeper for low priors and as a second opinion for

high priors: If (αAI +αAIαS − 2αS)> 0, D≥ 0, and

max

{
1,

(βS −βAI)(1−αS)

(αAI +αAIαS − 2αS)

}
≤ CM
CT
≤ βAI(1−αS)(1−βS)

αS(1−αAI)(1−βAI)
,

then for all priors p ∈ [0, τGS ], AI as a gatekeeper is optimal, and for all priors p ∈ [τGS ,1], AI

as a second opinion is optimal.
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In Proposition 7, the assumption αAIβAI(1 − αS)(1 − βS) < αSβS(1 − αAI)(1 − βAI) implies

that, in the absence of anchoring effects, the threshold prior above which AI as a second opinion

dominates AI as a gatekeeper, given by CT βS(1−βAI )
CT βS(1−βAI )+CMαAI (1−αS)

, is higher than the threshold

prior above which no AI dominates AI as a gatekeeper, given by CT βAI (1−βS)
CM (1−αAI )αS+CT βAI (1−βS)

. This

relationship indicates that, in the absence of anchoring effects, the no-AI option dominates both

AI as a gatekeeper and AI as a second opinion for prior values lying between these two thresholds.

The restriction on CM
CT

in Proposition 7(1) ensures the two thresholds—the one above which

AI as a second opinion dominates AI as a gatekeeper and the one above which no AI dominates

AI as a gatekeeper—are smaller than the prior thresholds where the anchoring effects of positive

diagnoses by the specialist and AI emerge, respectively. This condition guarantees the existence

of a range of priors where no AI is the optimal strategy. By contrast, the restriction on CM
CT

in

Proposition 7(2) implies that AI as a gatekeeper dominates no AI for all priors, and AI as a second

opinion dominates AI as a gatekeeper for all priors above a certain threshold.

⍺!

𝛽 "
#

p

Figure 1 Optimal policy for different values of p and βAI for CT = 50 and CM = 150. The numbers on the top

of the graphs are the different values of αS.

Figure 1 illustrates how the optimal strategy for using AI varies with the prior p of a patient

having the disease, assuming αAI = βS = 0.95, while adjusting αS (top labels of the graphs) and

βAI (y-axis). When the specialist’s sensitivity is low (αS = 0.6), AI as a gatekeeper is optimal for

lower priors p and transitions to AI as a second opinion as the prior increases, even when AI’s

specificity is relatively low (βAI = 0.6). As βAI increases, the range of priors favoring AI as a second

opinion expands, since the primary disadvantage of using AI as a second opinion—its higher risk
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of unnecessary treatments relative to AI as a gatekeeper (see Lemma 2)—diminishes with a higher

βAI . For medium or high αS, the optimal strategy involves using AI as a gatekeeper for low priors,

avoiding AI for intermediate priors, and adopting AI as a second opinion for higher priors. The

range of priors favoring no AI expands when βAI is low, as the lower specificity increases unnecessary

treatments. As the specialist’s sensitivity (αS) increases, AI as a gatekeeper becomes optimal over

a broader range of priors, because the primary drawback of using AI as a gatekeeper—its higher

expected cost of missed diagnoses relative to AI as a second opinion (see Lemma 1)—is mitigated

by a higher αS. Furthermore, the range of priors where no AI is optimal expands with lower AI

specificity (βAI) or higher specialist sensitivity (αS).

An example satisfying the conditions of Proposition 7(1) is when αAI = 0.97, βAI = 0.62, αS =

0.77, βS = 0.95, CM = 150, and CT = 50. In this case, the thresholds are τaG = 0.31, τGS = 0.35, and

τ cG = 0.65. For priors p∈ [0.31,0.35], the no-AI strategy is optimal.

5. Pathfinder: Data-Driven Clinical Workflow Optimization

In this section, we utilize the “Pathfinder” framework to optimize patient pathways based on

individualized risk assessments. We demonstrate the practical implementation of this system us-

ing the PAPILA dataset (Kovalyk et al. 2022), which includes data from 210 glaucoma patients.

This dataset contains structured clinical information—such as age, gender, and various eye-specific

measurements (e.g., refractive error, astigmatism, and lens status)—as well as high-resolution un-

structured data in the form of retinal fundus images for both eyes (Figure 2). The PAPILA dataset

is suitable for developing convolutional neural network (CNN)-based AI models that predict a

patient’s risk profile, enabling personalized clinical decision-making.

(a) Right eye of Patient #68 (b) Left eye of Patient #68

Figure 2 Fundus images from the PAPILA dataset for both eyes of Patient #68. Source: PAPILA dataset

(https://figshare.com/articles/dataset/PAPILA/14798004?file=35013982)

https://figshare.com/articles/dataset/PAPILA/14798004?file=35013982
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5.1. Data and Prior Prediction

Our dataset includes both clinical measurements and diagnostic outcomes for a total of 210 patients,

of whom 47 are confirmed glaucoma cases (i.e., Diagnosis = 1 in at least one eye) and 163 are

confirmed negative cases (i.e., Diagnosis = 0 in both eyes).

We train a probit model to predict the prior probability that a patient has glaucoma based on

readily available clinical features: age, gender, diopter values of left and right eyes, astigmatism,

and lens status (phakic or pseudophakic) for both eyes. Figure 3 presents the summary of the

probit model results, which show significant predictive power with an area under the ROC curve

(AUC) of 0.81.

Figure 3 Summary of results of the probit regression model to predict the prior probability of glaucoma

5.2. Simulating the Pathfinder in a Clinical Workflow

We demonstrate the implementation of the Pathfinder system by assigning each patient to their

optimal path based on the prior probability predicted by the probit model. Following Lim et al.

(2023), we assume specialists have high specificity (95%) but low sensitivity (60%), whereas AI

systems typically have high sensitivity (85–95%) but lower specificity (8570–90%).

In our simulation, each patient is assigned to an optimal clinical pathway—AI as a gatekeeper,

AI as a second opinion, or no AI—based on expected costs, which account for the costs of a

missed diagnosis (CM) and unnecessary treatment (CT ). The simulation assesses cost effectiveness

by predicting the prior probability of glaucoma and comparing the expected total costs across the

three pathways.

5.3. Results: Cost Reduction from Using AI

Figure 4 summarizes the cost analysis for different configurations of AI sensitivity and specificity,

alongside the cost savings achieved through personalized pathways using the Pathfinder system.
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Figure 4 Total expected cost of a missed diagnosis and unnecessary treatment for CM = 150, CT = 50, αS = 0.6,

and βS = 0.95 under different design configurations, with percentage cost reduction from personalization

over the best standard pathway.

When CM is three times higher than CT , using AI as a second opinion results in substantial cost

reductions, particularly when AI sensitivity and specificity are both high. For lower cost ratios,

using AI as a gatekeeper proves more effective in minimizing total costs.

5.4. Managerial Insights

The results of our analysis offer key insights for integrating AI into clinical decision-making, par-

ticularly in the context of glaucoma screening. These insights hinge on the interaction between

specialist expertise, AI performance, and the relative costs of misdiagnosis versus unnecessary

treatment.

First, when specialists have relatively low sensitivity, our findings suggest using AI—whether

as a gatekeeper or a second opinion—leads to lower overall costs than scenarios without AI. This

result holds even if AI has average quality, characterized by medium sensitivity and low specificity.

The choice between AI as a gatekeeper or as a second opinion depends on the trade-off between

the costs of missed diagnoses and unnecessary treatments. When the cost of a missed diagnosis,

CM , is significantly higher than the cost of unnecessary treatment, CT , AI as a second opinion

consistently results in lower expected costs, regardless of AI’s sensitivity or specificity. In such
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Figure 5 Total expected cost of a missed diagnosis and unnecessary treatment for CM = 50, CT = 50, αS = 0.6,

and βS = 0.95 under different design configurations, with percentage cost reduction from personalization

over the best standard pathway.

cases, AI’s primary role is to reduce false negatives, making it beneficial to use AI as an additional

layer of validation after the specialist.

On the other hand, when CM and CT are similar, using AI as a gatekeeper is generally the

optimal strategy, especially when AI has medium or high sensitivity. Under these conditions, AI can

effectively filter out low-risk cases, reducing the specialist’s workload and minimizing unnecessary

interventions. Interestingly, AI as a gatekeeper achieves greater cost reductions than AI as a second

opinion when AI specificity is low, because it efficiently screens a large patient pool.

Our analysis shows the Pathfinder system, which personalizes the clinical pathway for each

patient based on predicted risk, consistently reduces costs compared to the best uniform approach

across all scenarios. These cost savings are most pronounced when AI is of average quality—neither

highly sensitive nor highly specific—because personalized pathways tailor the combination of AI

and specialist interventions to optimize outcomes for each patient.

For “highly skilled” specialists with high sensitivity (resulting in fewer missed diagnoses), uni-

formly applying AI to all patients may be less effective, particularly when AI sensitivity is moderate

or specificity is low. When CM is much higher than CT , AI as a second opinion remains advan-

tageous, provided AI meets a sufficient quality threshold. In such cases, AI as a second opinion
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outperforms AI as a gatekeeper when AI has medium sensitivity and high specificity, striking a

balance between identifying true positives and avoiding false positives. Conversely, when CM and

CT are comparable, AI as a gatekeeper proves more effective, especially when AI sensitivity is high,

as it reduces unnecessary specialist referrals while maintaining its ability to identify high-risk cases.

Moreover, the Pathfinder system’s personalized approach consistently reduces costs compared

to any uniform strategy, even when using AI as a gatekeeper or a second opinion for all patients

is not optimal. The value of personalization is especially evident when AI quality is moderate,

requiring a nuanced approach that considers both the specialist’s skill and AI limitations. Our

results indicate that personalization yields the highest cost reductions when AI has average qual-

ity, making the Pathfinder system’s personalization component critical in balancing the trade-offs

between misdiagnosis and unnecessary treatments.

In summary, these insights underscore the importance of purposefully integrating AI into clinical

workflows, tailoring AI’s role based on both AI system performance and specialist expertise, as well

as the relative costs of diagnostic outcomes. Data-driven patient pathways enable more efficient

allocation of clinical resources, improving patient outcomes while optimizing overall costs.

6. Conclusion

This paper explores how AI can be integrated into healthcare systems to improve patient outcomes,

in line with the U.N.’s Sustainable Development Goal 3 on “good health and well-being.” We show

AI can help reduce missed diagnoses and unnecessary care, particularly for patients at the high and

low ends of the risk spectrum. Yet, for intermediate-risk patients—for whom diagnostic uncertainty

is greatest—the use of AI may lead to worse patient outcomes. Our finding points to the need to

tailor AI integration to individual risk profiles, rather than relying on a one-size-fits-all approach.

Our paper models a physician as a decision-maker influenced by anchoring bias, which affects

patient-pathway decisions when combined with AI. Our analysis shows the sequencing of AI and

human expertise plays a role in influencing patient outcomes. Specifically, using AI as a gatekeeper

can reduce missed diagnoses but may increase unnecessary treatments, due to specialists’ anchoring

on initial AI results. On the other hand, using AI as a second opinion can reduce unnecessary

treatments but potentially lead to more missed diagnoses. These findings are in line with strategic

intertemporal choice in supply chain management (e.g., Lee and Tang 1997).

Using glaucoma diagnosis as a case study, we quantify the cost implications of integrating AI

pathways tailored to patient characteristics. When specialists possess lower diagnostic skill, even

uniform AI pathways—whether as a gatekeeper or a second opinion—can reduce the total expected

cost of care. However, pathways tailored to individual patient characteristics yield greater efficiency,

particularly when the diagnostic quality of AI is moderate. By contrast, for highly skilled specialists,
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uniform AI pathways may increase costs, especially when AI exhibits lower specificity. In these

scenarios, personalized pathways demonstrate consistent value, ensuring AI augments—rather than

undermines—clinical outcomes.

In conclusion, personalized patient pathways for AI-augmented healthcare offer a promising

avenue to improving healthcare delivery. Drawing parallels with principles of supply chain man-

agement, AI-driven personalized pathways can optimize resource allocation and care delivery by

tailoring interventions to patient-specific needs (Dai). By aligning these strategies with the U.N.’s

SDGs, AI can emerge as a transformative tool, driving improvements in patient outcomes across

diverse healthcare settings.
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Abràmoff MD, Whitestone N, Patnaik JL, Rich E, Ahmed M, Husain L, Hassan MY, Tanjil MSH, Weitzman

D, Dai T, Wagner BD, Cherwek DH, Congdon N, Islam K (2023) Autonomous artificial intelligence

increases real-world specialist clinic productivity in a cluster-randomized trial. npj Digital Medicine

6(1).

Adida E, Dai T (2024) Impact of physician payment scheme on diagnostic effort and testing. Management

Science 70(8):5408–5425.

Agarwal N, Moehring A, Rajpurkar P, Salz T (2024) Combining human expertise with artificial intelligence:

Experimental evidence from radiology. National Bureau of Economic Research Working Paper .
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Appendices

A1: Anchoring and Adjustment in Extreme Cases

A1.1. AI As a Gatekeeper

We analyze the performance of AI as a gatekeeper in two extreme cases, where prior p= 0 or p= 1.

Case 1: Let p= 0. Suppose AI as a gatekeeper gives a positive outcome, with probability (1−βAI):
1. The probability that the specialist also gives a positive outcome is (1−βS).

2. The probability that the specialist gives a negative outcome is βS. The probability that the specialist

accepts their negative outcome over AI’s positive outcome is

min

{
1,

(1− p)(1−βAI)
p(1−αS)

}
,

which equals 1 as p→ 0.

3. Therefore, the overall probability of a positive outcome as p→ 0 is (1−βAI)(1−βS).

Case 2: Let p= 1. Suppose AI as a gatekeeper gives a negative outcome, with probability (1− αAI). If

AI gives a positive outcome,

1. The probability that the specialist also gives a positive outcome is αS.

2. The probability that the specialist gives a negative outcome is 1−αS. The probability that the specialist

accepts their negative outcome over AI’s positive outcome is

min

{
1,

(1− p)(1−βAI)
p(1−αS)

}
,

which equals 0 as p→ 1.

Thus, a negative outcome occurs when AI gives a negative outcome with probability (1−αAI).

A1.2. AI as a Second Opinion

We now consider AI as a second opinion in the extreme cases of p= 0 and p= 1.

Case 1: Let p= 0. Suppose the specialist gives a positive outcome, with probability (1−βS):

1. The probability that AI also gives a positive outcome is (1−βAI).

2. The probability that AI gives a negative outcome is βAI . The probability that the specialist accepts

AI’s negative outcome over their own positive outcome is

min

{
1,

(1− p)(1−βS)

p(1−αAI)

}
,

which equals 1 as p→ 0.

Therefore, the overall probability of a positive outcome as p→ 0 is (1−βAI)(1−βS).

Case 2: Let p= 1. Suppose the specialist gives a negative outcome, with probability (1−αS):

1. The probability that AI also gives a negative outcome is (1−αAI).

2. The probability that AI gives a positive outcome is αAI . The probability that the specialist accepts

AI’s positive outcome over their own negative outcome is

min

{
1,

p(1−αS)

(1− p)(1−βAI)

}
,

which equals 1 as p→ 1.
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3. Therefore, the overall probability of a negative outcome as p→ 1 is (1−αAI)(1−αS).

Suppose the specialist gives a positive outcome:

1. The probability that AI gives a negative outcome is 1−αAI . The probability that the specialist accepts

AI’s negative outcome over their own positive outcome is

min

{
1,

(1− p)(1−βAI)
p(1−αS)

}
,

which equals 0 as p→ 1.

True Condition = 1

P(Missed Diagnosis)

Gatekeeper AI Second Opinion AI No AI

(1−αAI) +αAI(1−αS)min
{

1, (1−p)(1−βAI )
p(1−αS)

}
(1−αS)(1−αAI) +αS(1−αAI)min

{
1, (1−p)(1−βS)

p(1−αAI )

}
1−αS

+(1−αS)αAI

(
1−min

{
1, p(1−αS)

(1−p)(1−βAI )

})
Table A1 Probabilities of Missed Diagnosis

True Condition = 0

P(Unnecessary Treatment)

Gatekeeper AI Second Opinion AI No AI

(1−βAI)(1−βS) (1−βS)(1−βAI) + (1−βS)βAI

(
1−min

{
1, (1−p)(1−βS)

p(1−αAI )

})
1−βS

(1−βAI)βS
(

1−min
{

1, (1−p)(1−βAI )
p(1−αS)

})
+βS(1−βAI)min

{
1, p(1−αS)

(1−p)(1−βAI )

}
Table A2 Probabilities of Unnecessary Treatment

A2: Technical Proofs

Proof of Proposition 1: From eqs. (2) and (3), the probabilities of missed diagnoses under gatekeeper AI

(PG
M(p)) and under specialist alone (P 0

M(p)) equal

PG
M(p) =

p(1−αAIαS) if p≤ (1−βAI)

(1−βAI)+(1−αS)

(p(1−αAI) + (1− p)αAI(1−βAI)) otherwise
, P 0

M(p) = p(1−αS).

The expected probability of a missed diagnosis under specialist alone is p(1 − αS). Because p(1 − αS) <

p(1−αAIαS), AI as a gatekeeper reduces the probability of a missed diagnosis if and only if

p(1−αS)> p(1−αAI) + (1− p)αAI(1−βAI) and p>
(1−βAI)

(1−βAI) + (1−αS)
.

Equivalently,

p((1−βAI) + (1− αS
αAI

))> (1−βAI).

If (1−βAI) + (1− αS

αAI
)≤ 0, no feasible value of p exists. Otherwise,

p >
(1−βAI)

(1−βAI) + (1− αS

αAI
)
and p>

(1−βAI)
(1−βAI) + (1−αS)

.
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If αAI >αS,

(1−βAI) + (1− αS
αAI

)> 0 and 1>
(1−βAI)

(1−βAI) + (1− αS

αAI
)
>

(1−βAI)
(1−βAI) + (1−αS)

and

τGM =
(1−βAI)

(1−βAI) + (1− αS

αAI
)
.

If αAI <αS and (1−βAI) + (1− αS

αAI
)> 0,

(1−βAI)
(1−βAI) + (1− αS

αAI
)
> 1>

(1−βAI)
(1−βAI) + (1−αS)

;

that is, no feasible value of p exists. Q.E.D.

Proof of Proposition 2: From eqs. (4) and (5), the probabilities of unnecessary treatment under gatekeeper

AI (PG
T (p)) and specialist alone (P 0

T (p)) are:

PG
T (p) = (1− p) ·

(1−βAI)(1−βS) if p≤ (1−βAI)

(1−βAI)+(1−αS)

(1−βAI)− (1−p)(1−βAI)
2βS

p(1−αS)
if p > (1−βAI)

(1−βAI)+(1−αS)

, P 0
T (p) = (1− p)(1−βS).

Further,

PG
T (p)−P 0

T (p) = (1− p) ·

−βAI(1−βS) if p≤ (1−βAI)

(1−βAI)+(1−αS)

(βS −βAI)− (1−p)(1−βAI)
2βS

p(1−αS)
if p > (1−βAI)

(1−βAI)+(1−αS)
.

The difference is always negative or zero if βAI ≥ βS. Otherwise, if βAI <βS, the difference is positive if

(βS −βAI)−
(1− p)(1−βAI)2βS

p(1−αS)
> 0 and p>

(1−βAI)
(1−βAI) + (1−αS)

.

Equivalently,

p >
(1−βAI)2

(1−βAI)2 + (1−αS)(1− βAI

βS
)
and p>

(1−βAI)
(1−βAI) + (1−αS)

.

Further,

(1−βAI)2

(1−βAI)2 + (1−αS)(1− βAI

βS
)
>

(1−βAI)
(1−βAI) + (1−αS)

⇐⇒ (1−αS)(
βAI
βS
−βAI)> 0.

Therefore,

τGT =
(1−βAI)2

(1−βAI)2 + (1−αS)(1− βAI

βS
)
.

Further,

∂τGT
∂βAI

=
(1−βAI)(αS)(βAI + 1− 2βS)

βS(1−βAI)2 + (1−αS)(1− βAI

βS
)2
.

Q.E.D.

Proof of Proposition 3: Simplifying P S
M(p) eqs. (7) and (8), we obtain the following:
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1. If 1−βAI

(1−αS)+(1−βAI)
≤ 1−βS

(1−αAI)+(1−βS)
,

P S
M(p)−P 0

M(p) =


[pαS(1−αAI)− p2αAI(1−αS)2

(1−p)(1−βAI)
] if p < 1−βAI

(1−αS)+(1−βAI)
,

p(αS −αAI) if 1−βAI

(1−αS)+(1−βAI)
≤ p≤ 1−βS

(1−αAI)+(1−βS)
,

[−pαAI(1−αS) + (1− p)αS(1−βS)] if p > 1−βS
(1−αAI)+(1−βS)

.

Now,

pαS(1−αAI)−
p2αAI(1−αS)2

(1− p)(1−βAI)
≤ 0 ⇐⇒ p≥ αS(1−αAI)(1−βAI)

αAI(1−αS)2 +αS(1−αAI)(1−βAI)
,

where

αS(1−αAI)(1−βAI)
αAI(1−αS)2 +αS(1−αAI)(1−βAI)

≤ 1−βAI
(1−αS) + (1−βAI)

⇐⇒ αS −αAI ≤ 0.

Further,

−pαAI(1−αS) + (1− p)αS(1−βS)≤ 0 ⇐⇒ p≥ αS(1−βS)

αS(1−βS) +αAI(1−αS)
,

where

αS(1−βS)

αS(1−βS) +αAI(1−αS)
≥ 1−βS

(1−αAI) + (1−βS)
⇐⇒ αS −αAI ≥ 0.

Therefore, we conclude the following

• If αS −αAI ≤ 0,

P S
M(p)−P 0

M(p)≤ 0 ⇐⇒ p≥ αS(1−αAI)(1−βAI)
αAI(1−αS)2 +αS(1−αAI)(1−βAI)

.

• If αS −αAI ≥ 0,

P S
M(p)−P 0

M(p)≤ 0 ⇐⇒ p≥ αS(1−βS)

αS(1−βS) +αAI(1−αS)
.

2. Alternatively, if 1−βAI

(1−αS)+(1−βAI)
> 1−βS

(1−αAI)+(1−βS)
,

P S
M(p)−P 0

M(p) =


[pαS(1−αAI)− p2αAI(1−αS)2

(1−p)(1−βAI)
] if p≤ 1−βS

(1−αAI)+(1−βS)
,

[− p2αAI(1−αS)2

(1−p)(1−βAI)
+ (1− p)αS(1−βS)] if 1−βS

(1−αAI)+(1−βS)
< p< 1−βAI

(1−αS)+(1−βAI)
,

[−pαAI(1−αS) + (1− p)αS(1−βS)] if p≥ 1−βAI

(1−αS)+(1−βAI)
.

Now,

pαS(1−αAI)−
p2αAI(1−αS)2

(1− p)(1−βAI)
≤ 0 ⇐⇒ p≥ αS(1−αAI)(1−βAI)

αAI(1−αS)2 +αS(1−αAI)(1−βAI)
,

where

αS(1−αAI)(1−βAI)
αAI(1−αS)2 +αS(1−αAI)(1−βAI)

≤ 1−βS
(1−αAI) + (1−βS)

⇐⇒

αS(1−αAI)2(1−βAI)≤ αAI(1−αS)2(1−βS).

Similarly,

− p
2αAI(1−αS)2

(1− p)(1−βAI)
+ (1− p)αS(1−βS)≤ 0 ⇐⇒ p≥

√
αS(1−βS)(1−βAI)√

αS(1−βS)(1−βAI) +
√
αAI(1−αS)2

,
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where √
αS(1−βS)(1−βAI)√

αS(1−βS)(1−βAI) +
√
αAI(1−αS)2

≥ 1−βS
(1−αAI) + (1−βS)

⇐⇒

αS(1−αAI)2(1−βAI)≥ αAI(1−αS)2(1−βS)

and √
αS(1−βS)(1−βAI)√

αS(1−βS)(1−βAI) +
√
αAI(1−αS)2

≤ 1−βAI
(1−αS) + (1−βAI)

⇐⇒ αS(1−βS)≤ αAI(1−βAI).

Finally,

−pαAI(1−αS) + (1− p)αS(1−βS)≤ 0 ⇐⇒ p≥ αS(1−βS)

αS(1−βS) +αAI(1−αS)
,

where

αS(1−βS)

αS(1−βS) +αAI(1−αS)
≥ 1−βAI

(1−αS) + (1−βAI)
⇐⇒ αS(1−βS)≥ αAI(1−βAI).

Now, 1−βAI

(1−αS)+(1−βAI)
> 1−βS

(1−αAI)+(1−βS)
⇐⇒ (1−αAI)(1−βAI)> (1−αS)(1−βS).

• If αS(1−αAI)2(1−βAI)≤ αAI(1−αS)2(1−βS),

αS(1−αAI)<αAI(1−αS) =⇒ αS <αAI

and √
αS(1−βS)(1−βAI)√

αS(1−βS)(1−βAI) +
√
αAI(1−αS)2

≤ 1−βS
(1−αAI) + (1−βS)

≤ 1−βAI
(1−αS) + (1−βAI)

=⇒

βS −βAI ≥ 0

and

αS(1−βS)<αAI(1−βAI).

Therefore, if αS(1−αAI)2(1−βAI)≤ αAI(1−αS)2(1−βS),

P S
M(p)−P 0

M(p)≤ 0 ⇐⇒ p≥ αS(1−αAI)(1−βAI)
αAI(1−αS)2 +αS(1−αAI)(1−βAI)

.

• If αS(1−αAI)2(1−βAI)>αAI(1−αS)2(1−βS),

αS(1−αAI)(1−βAI)
αAI(1−αS)2 +αS(1−αAI)(1−βAI)

>
1−βS

(1−αAI) + (1−βS)

and √
αS(1−βS)(1−βAI)√

αS(1−βS)(1−βAI) +
√
αAI(1−αS)2

≥ 1−βS
(1−αAI) + (1−βS)

.

Further, if βS −βAI < 0,

(1−αAI)(1−βAI)> (1−αS)(1−βS) =⇒ αS >αAI =⇒ αS(1−βS)>αAI(1−βS).
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Therefore, if αS(1−αAI)2(1−βAI)>αAI(1−αS)2(1−βS) and βS <βAI ,

P S
M(p)−P 0

M(p)≤ 0 ⇐⇒ p≥ αS(1−βS)

αS(1−βS) +αAI(1−αS)
.

Alternately, if αS(1−αAI)2(1−βAI)>αAI(1−αS)2(1−βS), βS−βAI ≥ 0 and αS(1−βS)<αAI(1−βAI),

P S
M(p)−P 0

M(p)≤ 0 ⇐⇒ p≥
√
αS(1−βS)(1−βAI)√

αS(1−βS)(1−βAI) +
√
αAI(1−αS)2

.

Finally, if αS(1−αAI)2(1−βAI)>αAI(1−αS)2(1−βS), βS −βAI ≥ 0 and αS(1−βS)≥ αAI(1−βAI),

P S
M(p)−P 0

M(p)≤ 0 ⇐⇒

p∈ [

√
αS(1−βS)(1−βAI)√

αS(1−βS)(1−βAI) +
√
αAI(1−αS)2

,
1−βAI

(1−αS) + (1−βAI)
]∪ [

αS(1−βS)

αS(1−βS) +αAI(1−αS)
,1]

Q.E.D.

Condition Priors where AI as a second opinion

reduces (or maintains)

the probability of unnecessary treatment

1 (1−αAI)(1−βAI)≤ (1−αS)(1−βS), [0, βAI(1−βS)

βAI(1−βS)+βS(1−αS)
]

βS >βAI

2 (1−αAI)(1−βAI)≤ (1−αS)(1−βS), [0, (1−βS)2βAI

(1−βS)2βAI+βS(1−βAI)(1−αAI)
]

βS ≤ βAI
3 (1−αAI)(1−βAI)> (1−αS)(1−βS), [0, (1−βS)βAI

(1−βS)βAI+(1−αS)βS
]

βAI(1−αAI)≤ βS(1−αS),

(1−αAI)(1−βAI)2βS > (1−αS)(1−βS)2βAI

4 (1−αAI)(1−βAI)> (1−αS)(1−βS), [0, (1−βS)2βAI

(1−βS)2βAI+βS(1−βAI)(1−αAI)
]

βAI(1−αAI)>βS(1−αS),

(1−αAI)(1−βAI)2βS ≤ (1−αS)(1−βS)2βAI

5 (1−αAI)(1−βAI)> (1−αS)(1−βS), [0,

√
(1−βS)2βAI√

(1−βS)2βAI+
√

(1−αAI)(1−αS)βS
]

βAI(1−αAI)>βS(1−αS),

(1−αAI)(1−βAI)2βS > (1−αS)(1−βS)2βAI
Table A3 Proposition 4

Proof of Proposition 4: Because

min

{
1,

(1− p)(1−βS)

p(1−αAI)

}
=

1 if p≤ 1−βS
(1−αAI)+(1−βS)

(1−p)(1−βS)

p(1−αAI)
if p > 1−βS

(1−αAI)+(1−βS)

and,

min

{
1,

p(1−αS)

(1− p)(1−βAI)

}
=


p(1−αS)

(1−p)(1−βAI)
if p≤ 1−βAI

(1−αS)+(1−βAI)

1 if p > 1−βAI

(1−αS)+(1−βAI)
,
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• If 1−βAI

1−βAI+1−αS
≤ 1−βS

1−βS+1−αAI
,

P S
T (p) =


(1− p)(1−βS)(1−βAI) + p(1−αS)βS if p≤ 1−βAI

1−βAI+1−αS

(1− p)(1−βAI) if 1−βAI

1−βAI+1−αS
< p< 1−βS

1−βS+1−αAI

(1− p)(1−βAI) + (1− p)(1−βS)βAI − (1−p)2(1−βS)2βAI

p(1−αAI)
if p≥ 1−βS

1−βS+1−αAI

and

P S
T (p)−P 0

T (p) =


−(1− p)(1−βS)βAI + p(1−αS)βS if p≤ 1−βAI

1−βAI+1−αS

(1− p)(βS −βAI) if 1−βAI

1−βAI+1−αS
< p< 1−βS

1−βS+1−αAI

(1− p)(βS −βAI) + (1− p)(1−βS)βAI − (1−p)2(1−βS)2βAI

p(1−αAI)
if p≥ 1−βS

1−βS+1−αAI
.

Now,

−(1− p)(1−βS)βAI + p(1−αS)βS ≤ 0 ⇐⇒ p≤ (1−βS)βAI
(1−βS)βAI + (1−αS)βS

,

where

(1−βS)βAI
(1−βS)βAI + (1−αS)βS

≤ 1−βAI
1−βAI + 1−αS

⇐⇒ βS ≥ βAI .

Further,

(1− p)(βS −βAI)≤ 0 ⇐⇒ βS ≤ βAI .

Finally,

(1− p)(βS −βAI) + (1− p)(1−βS)βAI −
(1− p)2(1−βS)2βAI

p(1−αAI)
≤ 0 ⇐⇒ p≤ (1−βS)2βAI

(1−βS)2βAI +βS(1−βAI)(1−αAI)
,

where,

(1−βS)2βAI
(1−βS)2βAI +βS(1−βAI)(1−αAI)

≥ 1−βS
1−βS + 1−αAI

⇐⇒ βS ≤ βAI .

Therefore, if βAI <βS,

P S
T (p)−P 0

T (p)≤ 0 ⇐⇒ p≤ (1−βS)βAI
(1−βS)βAI + (1−αS)βS

.

If βAI >βS,

P S
T (p)−P 0

T (p)≤ 0 ⇐⇒ p≤ (1−βS)2βAI
(1−βS)2βAI +βS(1−βAI)(1−αAI)

.

If βAI = βS,

P S
T (p)−P 0

T (p)≤ 1−βS
1−βS + 1−αAI

.

• Alternately, if 1−βAI

1−βAI+1−αS
> 1−βS

1−βS+1−αAI
,

P S
T (p) =


(1− p)(1−βS)(1−βAI) + p(1−αS)βS if p≤ 1−βS

1−βS+1−αAI

(1− p)(1−βS) + p(1−αS)βS − (1−p)2(1−βS)2βAI

p(1−αAI)
if 1−βS

1−βS+1−αAI
< p< 1−βAI

1−βAI+1−αS

(1− p)(1−βAI) + (1− p)(1−βS)βAI − (1−p)2(1−βS)2βAI

p(1−αAI)
if p≥ 1−βAI

1−βAI+1−αS
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and

P S
T (p)−P 0

T (p) =


−(1− p)(1−βS)βAI + p(1−αS)βS if p≤ 1−βS

1−βS+1−αAI

p(1−αS)βS − (1−p)2(1−βS)2βAI

p(1−αAI)
if 1−βS

1−βS+1−αAI
< p< 1−βAI

1−βAI+1−αS

(1− p)(βS −βAI) + (1− p)(1−βS)βAI − (1−p)2(1−βS)2βAI

p(1−αAI)
if p≥ 1−βAI

1−βAI+1−αS
.

Now,

−(1− p)(1−βS)βAI + p(1−αS)βS ≤ 0 ⇐⇒ p≤ (1−βS)βAI
(1−βS)βAI + (1−αS)βS

,

where

(1−βS)βAI
(1−βS)βAI + (1−αS)βS

≤ 1−βS
1−βS + 1−αAI

⇐⇒ βAI(1−αAI)≤ βS(1−αS).

Further,

p(1−αS)βS −
(1− p)2(1−βS)2βAI

p(1−αAI)
≤ 0 ⇐⇒ p≤

√
(1−βS)2βAI√

(1−βS)2βAI +
√

(1−αAI)(1−αS)βS
,

where √
(1−βS)2βAI√

(1−βS)2βAI +
√

(1−αAI)(1−αS)βS
>

1−βS
1−βS + 1−αAI

⇐⇒ βAI(1−αAI)>βS(1−αS)

and √
(1−βS)2βAI√

(1−βS)2βAI +
√

(1−αAI)(1−αS)βS
<

1−βAI
1−βAI + 1−αS

⇐⇒ (1−αAI)(1−βAI)2βS > (1−αS)(1−βS)2βAI .

Finally,

(1− p)(βS −βAI) + (1− p)(1−βS)βAI −
(1− p)2(1−βS)2βAI

p(1−αAI)
≤ 0 ⇐⇒ p≤ (1−βS)2βAI

(1−βS)2βAI +βS(1−βAI)(1−αAI)
,

where

(1−βS)2βAI
(1−βS)2βAI +βS(1−βAI)(1−αAI)

≥ 1−βAI
1−βAI + 1−αS

⇐⇒ (1−αAI)(1−βAI)2βS ≤ (1−αS)(1−βS)2βAI .

Proof of Proposition 5: The difference in costs (CG(p)−C0(p)) is given by

CG(p)−C0(p) =


CMp(1−αAI)αS −CT (1− p)βAI(1−βS), if p≤ (1−βAI)

(1−βAI)+(1−αS)
,

CMp(αS −αAI) +CM(1− p)αAI(1−βAI)

−CT (1− p)βAI(1−βS) +CT (1− p)(1−βAI)βS
(

1− (1−p)(1−βAI)

p(1−αS)

)
, if p > (1−βAI)

(1−βAI)+(1−αS)
.

For p≤ (1−βAI)

(1−βAI)+(1−αS)
,

CG(p)−C0(p)≤ 0 ⇐⇒

p≤
CT βAI(1−βS)

CM (1−αAI)αS+CT βAI(1−βS)
if CM

CT
≥ βAI(1−αS)(1−βS)

αS(1−αAI)(1−βAI)

p≤ (1−βAI)

(1−βAI)+(1−αS)
if CM

CT
< βAI(1−αS)(1−βS)

αS(1−αAI)(1−βAI)
.

(A1)

For p > (1−βAI)

(1−βAI)+(1−αS)
,

CG(p)−C0(p)≤ 0 ⇐⇒ p2

(1− p)2
CM(αS −αAI)(1−αS) +

p

1− p
(1−αS)(CMαAI(1−βAI)−CT (βAI −βS))

−CTβS(1−βAI)2 ≤ 0.
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Condition Priors where AI as a gatekeeper

reduces (or maintains)

the total expected cost

of a missed diagnosis and unnecessary treatment

αS −αAI > 0, [0,
√
D−(1−αS)(CMαAI(1−βAI)+CT (βS−βAI))√

D−(1−αS)(CMαAI(1−βAI)+CT (βS−βAI))+2CM (αS−αAI)(1−αS)
]

CMαS(1−αAI)(1−βAI)−CTβAI(1−αS)(1−βS)≤ 0

αS −αAI > 0, [0, CT βAI(1−βS)

CM (1−αAI)αS+CT βAI(1−βS)
]

CMαS(1−αAI)(1−βAI)−CTβAI(1−αS)(1−βS)> 0

αS −αAI < 0, [0,1]

D< 0

CMαS(1−αAI)(1−βAI)−CTβAI(1−αS)(1−βS)< 0

αS −αAI ≤ 0, [0, CT βAI(1−βS)

CM (1−αAI)αS+CT βAI(1−βS)
]∪

D≥ 0 [
√
D+(1−αS)(CMαAI(1−βAI)+CT (βS−βAI))√

D+(1−αS)(CMαAI(1−βAI)+CT (βS−βAI))+2CM (αAI−αS)(1−αS)
,1]

CMαS(1−αAI)(1−βAI)−CTβAI(1−αS)(1−βS)> 0

αS −αAI < 0, [0,1]

D≥ 0

CMαS(1−αAI)(1−βAI)−CTβAI(1−αS)(1−βS)≤ 0

CM(1−βAI)(αAI −αS)−CMαS(1−αAI)(1−βAI)
−CT (βS −βAI)(1−αS)≥ 0

αS −αAI ≤ 0, [0,
√
D−(1−αS)(CMαAI(1−βAI)+CT (βS−βAI))√

D−(1−αS)(CMαAI(1−βAI)+CT (βS−βAI))+2CM (αS−αAI)(1−αS)
]

D≥ 0 ∪[
√
D+(1−αS)(CMαAI(1−βAI)+CT (βS−βAI))√

D+(1−αS)(CMαAI(1−βAI)+CT (βS−βAI))+2CM (αAI−αS)(1−αS)
,1]

CMαS(1−αAI)(1−βAI)−CTβAI(1−αS)(1−βS)≤ 0

CM(1−βAI)(αAI −αS)−CMαS(1−αAI)(1−βAI)
−CT (βS −βAI)(1−αS)< 0

Table A4 Gatekeeper vs. No AI for βS >βAI ,

D= (1−αS)2(CMαAI(1−βAI)+CT (βS −βAI))2 +4CMCT (αS −αAI)(1−αS)βS(1−βAI)2; limαS→αAI D> 0 and

lim
αS→αAI

√
D− (1−αS)(CMαAI(1−βAI)+CT (βS −βAI))√

D− (1−αS)(CMαAI(1−βAI)+CT (βS −βAI))+ 2CM (αS −αAI)(1−αS)

=
CTβS(1−βAI)2

(CM (1−αS)αAI(1−βAI)+CTβS(1−βAI)2 +CT (1−αS)(βS −βAI))

lim
αS→αAI

√
D+(1−αS)(CMαAI(1−βAI)+CT (βS −βAI))√

D+(1−αS)(CMαAI(1−βAI)+CT (βS −βAI))+ 2CM (αAI −αS)(1−αS)
= 1.

Letting p

1−p =X ⇐⇒ p= X
X+1

,

p >
(1−βAI)

(1−βAI) + (1−αS)
& CG(p)−C0(p)≤ 0 ⇐⇒ f(X) =CM(αS −αAI)(1−αS)X2 + (1−αS)(CMαAI(1−βAI)−CT (βAI −βS))X

−CTβS(1−βAI)2 ≤ 0 & X >
(1−βAI)
(1−αS)

.

If αS = αAI and (CMαAI(1−βAI)−CT (βAI−βS))> 0 (which is always true when βS ≥ βAI), then f(X)≤ 0

if

X ≤ CTβS(1−βAI)2

(1−αS)(CMαAI(1−βAI)−CT (βAI −βS))
& X >

(1−βAI)
(1−αS)

.
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Further, if

CTβS(1−βAI)2

(1−αS)(CMαAI(1−βAI)−CT (βAI −βS))
≥ (1−βAI)

(1−αS)
⇐⇒ CMαAI(1−βAI)−CTβAI(1−βS)≤ 0,

then

CG(p)−C0(p)≤ 0 ⇐⇒ p∈

[
0,min

{
CTβAI(1−βS)

CM(1−αAI)αS +CTβAI(1−βS)
,

(1−βAI)
(1−βAI) + (1−αS)

}]

∪

[
(1−βAI)

(1−βAI) + (1−αS)
,

CTβS(1−βAI)2

CM(1−αS)αAI(1−βAI) +CTβS(1−βAI)2−CT (1−αS)(βAI −βS)

]
.

Recall that

f(X) =CM(αS −αAI)(1−αS)X2 + (1−αS)(CMαAI(1−βAI) +CT (βS −βAI))X −CTβS(1−βAI)2

and

f

(
(1−βAI)
(1−αS)

)
=
CTαS(1−αAI)(1−βAI)

(1−αS)

[CM
CT
− βAI(1−αS)(1−βS)

αS(1−αAI)(1−βAI)

]
.

When αS 6= αAI , f(X) = 0 is a quadratic equation with roots

X∗1 =

√
D− (1−αS)(CMαAI(1−βAI) +CT (βS −βAI))

2CM(αS −αAI)(1−αS)

X∗2 =
−
√
D− (1−αS)(CMαAI(1−βAI) +CT (βS −βAI))

2CM(αS −αAI)(1−αS)
,

and vertex

X∗ =
−(1−αS)(CMαAI(1−βAI) +CT (βS −βAI))

2CM(αS −αAI)(1−αS)
,

where

D= (1−αS)2(CMαAI(1−βAI) +CT (βS −βAI))2 + 4CMCT (αS −αAI)(1−αS)βS(1−βAI)2.

If αS >αAI , then f(X) is an upward parabola with discriminant D> 0, f(0)< 0, and X∗1 > 0, X∗2 < 0, with

a vertex less than 0.

• Case 1: If CM

CT
< βAI(1−αS)(1−βS)

αS(1−αAI)(1−βAI)
, then f

(
(1−βAI)

(1−αS)

)
< 0, and (1−βAI)

(1−αS)
<X∗1 . Therefore, from eq. (A1),

CG(p)−C0(p)≤ 0 ⇐⇒ p∈
[
0,

X∗1
X∗1 + 1

]
.

• Case 2: If CM

CT
≥ βAI(1−αS)(1−βS)

αS(1−αAI)(1−βAI)
, then f

(
(1−βAI)

(1−αS)

)
≥ 0, and (1−βAI)

(1−αS)
≥X∗1 . Therefore, from eq. (A1),

CG(p)−C0(p)≤ 0 ⇐⇒ p∈
[
0,

CTβAI(1−βS)

CM(1−αAI)αS +CTβAI(1−βS)

]
.

If αS <αAI , then f(X) is a downward parabola, with f(0)< 0 and vertex greater than 0.

• Case 1: If D < 0, then f(X) < 0 for all X ≥ 0, implying that f
(

(1−βAI)

(1−αS)

)
< 0, which is equivalent to

CM

CT
< βAI(1−αS)(1−βS)

αS(1−αAI)(1−βAI)
. Therefore, from eq. (A1),

CG(p)−C0(p)≤ 0 ⇐⇒ p∈ [0,1].

One example where this case holds is CM = CT = 50, αAI = 0.95, βAI = 0.81, αS = 0.75, βS = 0.95, D =

−1.097.



Dai and Singh: Using AI as Gatekeeper or Second Opinion: Designing Patient Pathways for AI-Augmented Healthcare A11

• Case 2: If D≥ 0, then 0≤X∗1 ≤X∗2
— If CM

CT
≥ βAI(1−αS)(1−βS)

αS(1−αAI)(1−βAI)
, then f

(
(1−βAI)

(1−αS)

)
≥ 0. Therefore, from eq. (A1),

CG(p)−C0(p)≤ 0 ⇐⇒ p∈
[
0,

CTβAI(1−βS)

CM(1−αAI)αS +CTβAI(1−βS)

]
∪
[

X∗2
X∗2 + 1

,1

]
.

Note αS <αAI (a downward parabola) and f
(

(1−βAI)

(1−αS)

)
≥ 0 together imply D≥ 0.

— If CM

CT
< βAI(1−αS)(1−βS)

αS(1−αAI)(1−βAI)
, then f

(
(1−βAI)

(1−αS)

)
< 0. Further, if (1−βAI)

(1−αS)
<X∗, that is, CM(αAI +αAIαS−

2αS)<CT (βS −βAI)(1−αS), then from eq. (A1),

CG(p)−C0(p)≤ 0 ⇐⇒ p∈
[
0,

X∗1
X∗1 + 1

]
∪
[

X∗2
X∗2 + 1

,1

]
.

However, if (1−βAI)

(1−αS)
>X∗, that is, CM(αAI +αAIαS − 2αS)>CT (βS −βAI)(1−αS), then from eq. (A1),

CG(p)−C0(p)≤ 0 ⇐⇒ p∈ [0,1] .

Q.E.D.

Proof of Lemma 1: If CT = 0, then CG(p)−CS(p) =CM(PG
M(p)−P S

M(p)). Using eqs. (3) and (7), we have

CG(p)−CS(p) =CMp
[
(αS −αAI)

+αAI(1−αS)
(

1 + min

{
(1− p)(1−βAI)

p(1−αS)
,

p(1−αS)

(1− p)(1−βAI)

})
−αS(1−αAI) min

{
1,

(1− p)(1−βS)

p(1−αAI)

}]
=CMp

[
αS(1−αAI)(1−min

{
1,

(1− p)(1−βS)

p(1−αAI)

}
)

+αAI(1−αS) min

{
(1− p)(1−βAI)

p(1−αS)
,

p(1−αS)

(1− p)(1−βAI)

}]
≥ 0.

Q.E.D.

Proof of Lemma 2: If CM = 0, then CG(p)−CS(p) =CT (PG
T (p)−P S

T (p)). Using eqs. (5) and (9), we have

CG(p)−CS(p) =−CT (1− p)
[
βS(1−βAI)(1−min

{
1,

(1− p)(1−βS)

p(1−αAI)

}
)

+βAI(1−βS) min

{
(1− p)(1−βAI)

p(1−αS)
,

p(1−αS)

(1− p)(1−βAI)

}]
≤ 0.

Q.E.D.

Proof of Proposition 6: If

p1 =
(1−βAI)

(1−βAI) + (1−αS)
<

(1−βS)

(1−βS) + (1−αAI)
= p2,

the difference in expected costs of missed diagnoses and unnecessary treatment under AI as a second opinion

and AI as a gatekeeper, CS(p)−CG(p), is given by
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Condition Priors where AI as a second opinion

has total expected cost

less than or equal to

AI as a gatekeeper

CMαAI(1−αS)(1−βS) [
(1−αAI)(1−αS)

[
(CT βAI+CMαS)(1−βS)−CMαAI(1−βAI)

]
+
√
D′

(1−αAI)(1−αS)
[
(CT βAI+CMαS)(1−βS)−CMαAI(1−βAI)

]
+
√
D′+2CMαS(1−αS)(1−αAI)2

,1]

−CTβS(1−αAI)(1−βAI)≤ 0

CMαAI(1−αS)(1−βS) [ CT βS(1−βAI)

CT βS(1−βAI)+CMαAI(1−αS)
,1]

−CTβS(1−αAI)(1−βAI)> 0

Table A5 Second Opinion AI vs. Gatekeeper AI for (1−αAI)(1−βAI)≤ (1−αS)(1−βS), βS >βAI ,

βAI <αS +αAI and CM ≥CT

D′ =
[
(CTβAI +CMαS)(1−αAI)(1−αS)(1−βS)−CMαAI(1−αS)(1−αAI)(1−βAI)

]2
+4CMCTαS(1−αS)(1−αAI)2

[
βS(1−βAI)2(1−αAI)−βAI(1−βS)2(1−αS)

]

CS(p)−CG(p) =



p(1−αS)[(1−p)CT βS(1−βAI)−pCMαAI(1−αS)]

(1−p)(1−βAI)
, if p≤ p1

(1−p)(1−βAI)[(1−p)CT βS(1−βAI)−pCMαAI(1−αS)]

p(1−αS)
, if p1 < p< p2

(1−αS)(p((1−αAI)+(1−βS))−(1−βS))(CT (1−p)βAI(1−βS)−CMpαS(1−αAI))

p(1−αAI)(1−αS)

+ (1−p)(1−αAI)(1−βAI)(CT (1−p)βS(1−βAI)−CMpαAI(1−αS))

p(1−αAI)(1−αS)
, if p≥ p2.

Now, CS(p)−CG(p)≤ 0 if

p≥ CTβS(1−βAI)
CTβS(1−βAI) +CMαAI(1−αS)

, p≤ (1−βAI)
(1−βAI) + (1−αS)

or

p≥ CTβS(1−βAI)
CTβS(1−βAI) +CMαAI(1−αS)

,
(1−βAI)

(1−βAI) + (1−αS)
< p<

(1−βS)

(1−βS) + (1−αAI)
or

−CMp2αS(1−αS)(1−αAI)2 +CT (1− p)2
[
βS(1−βAI)2(1−αAI)−βAI(1−βS)2(1−αS)

]
+ p(1− p) [(CTβAI +CMαS)(1−αAI)(1−αS)(1−βS)−CMαAI(1−αS)(1−αAI)(1−βAI)]≤ 0,

p≥ (1−βS)

(1−βS) + (1−αAI)
.

Consider the quadratic function:

f(X) =−CMαS(1−αS)(1−αAI)2X2 +CT
[
βS(1−βAI)2(1−αAI)−βAI(1−βS)2(1−αS)

]
+X [(CTβAI +CMαS)(1−αAI)(1−αS)(1−βS)−CMαAI(1−αS)(1−αAI)(1−βAI)] .

The quadratic function f(X) is a downward-sloping parabola, which will certainly be negative as X (which

equals p

1−p ) approaches ∞ (equivalently, as p approaches 1). The discriminant of the quadratic f(X) is

D′ = [(CTβAI +CMαS)(1−αAI)(1−αS)(1−βS)−CMαAI(1−αS)(1−αAI)(1−βAI)]2

+ 4CMCTαS(1−αS)(1−αAI)2
[
βS(1−βAI)2(1−αAI)−βAI(1−βS)2(1−αS)

]
.



Dai and Singh: Using AI as Gatekeeper or Second Opinion: Designing Patient Pathways for AI-Augmented Healthcare A13

The vertex of the quadratic f(X) is at X∗ such that

X∗ =
(CTβAI +CMαS)(1−αAI)(1−αS)(1−βS)−CMαAI(1−αS)(1−αAI)(1−βAI)

2CMαS(1−αS)(1−αAI)2
.

The roots of f(X) = 0, denoted by X∗1 and X∗2 , are

X∗1 =
(CTβAI +CMαS)(1−αAI)(1−αS)(1−βS)−CMαAI(1−αS)(1−αAI)(1−βAI)−

√
D′

2CMαS(1−αS)(1−αAI)2

X∗2 =
(CTβAI +CMαS)(1−αAI)(1−αS)(1−βS)−CMαAI(1−αS)(1−αAI)(1−βAI) +

√
D′

2CMαS(1−αS)(1−αAI)2
.

• Case 1: If

CTβS(1−βAI)
CTβS(1−βAI) +CMαAI(1−αS)

≥ (1−βS)

(1−βS) + (1−αAI)
⇐⇒ CTβS(1−αAI)(1−βAI)≥CMαAI(1−αS)(1−βS),

then CS(p)−CG(p)≥ 0 for p= p2. Further, CS(p)−CG(p)≤ 0 for p= p1. Because CS(p)−CG(p) is continuous,

this implies D′ ≥ 0, and

CS(p)−CG(p)≤ 0 ⇐⇒

p∈

[
(CTβAI +CMαS)(1−αAI)(1−αS)(1−βS)−CMαAI(1−αS)(1−αAI)(1−βAI) +

√
D′

(CTβAI +CMαS)(1−αAI)(1−αS)(1−βS)−CMαAI(1−αS)(1−αAI)(1−βAI) +
√
D′+ 2CMαS(1−αS)(1−αAI)2

,1

]
.

An example where this case holds is CM =CT = 50, αAI = 0.95, βAI = 0.81, αS = 0.75, βS = 0.95.

• Case 2: If

CTβS(1−βAI)
CTβS(1−βAI) +CMαAI(1−αS)

<
(1−βS)

(1−βS) + (1−αAI)
⇐⇒ CTβS(1−αAI)(1−βAI)<CMαAI(1−αS)(1−βS),

then f
(

p

1−p

)
< 0 for p= (1−βS)

(1−βS)+(1−αAI)
. If the vertex of f(X) is to the left of (1−βS)

(1−αAI)
, then

(1−βS)

(1−βS)+(1−αAI)

1− (1−βS)

(1−βS)+(1−αAI)

=
(1−βS)

(1−αAI)
≥ (CTβAI +CMαS)(1−αAI)(1−αS)(1−βS)−CMαAI(1−αS)(1−αAI)(1−βAI)

2CMαS(1−αS)(1−αAI)2
,

which implies

CMαAI(1−βAI)≥ (CTβAI −CMαS)(1−βS),

then

CS(p)−CG(p)≤ 0 ⇐⇒ p≥ CTβS(1−βAI)
CTβS(1−βAI) +CMαAI(1−αS)

.

An example where this case holds is CM =CT = 50, αAI = 0.90, βAI = 0.82, αS = 0.60, βS = 0.95.

Suppose now that the vertex is to the right:

(1−βS)

(1−βS)+(1−αAI)

1− (1−βS)

(1−βS)+(1−αAI)

=
(1−βS)

(1−αAI)
<

(CTβAI +CMαS)(1−αAI)(1−αS)(1−βS)−CMαAI(1−αS)(1−αAI)(1−βAI)
2CMαS(1−αS)(1−αAI)2

,

which implies

CMαAI(1−βAI) +CMαS(1−βS)<CTβAI(1−βS).

Because 1−βAI > 1−βS, if we restrict CM ≥CT , the above condition implies that βAI >αAI +αS, which is

not a practical assumption if all sensitivity and specificity values are greater than 0.5. Q.E.D.
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Proof of Proposition 7: Follows directly from Propositions 5 and 6. Under the assumptions of Proposition 7,

τaG < τ
G
S because

αAIβAI(1−αS)(1−βS)<αSβS(1−αAI)(1−βAI) ⇐⇒
CTβAI(1−βS)

CM(1−αAI)αS +CTβAI(1−βS)
<

CTβS(1−βAI)
CTβS(1−βAI) +CMαAI(1−αS)

.

Further,

CM
CT

>
βS
αAI

=⇒

CTβS(1−βAI)
CTβS(1−βAI) +CMαAI(1−αS)

<
(1−βAI)

(1−βAI) + (1−αS)
≤ τ cG (see proof of Proposition 5).

Q.E.D.
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