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Generative AI (GenAI) tools, such as ambient listening, hold promise for transforming medical prac-
tice by integrating diverse data formats and delivering multimodal outputs. Yet, their uptake in
healthcare is limited by the need for customization and the lack of suitable provider payment models.
In current U.S. practice, the costs associated with using these tools are classified as indirect, with no
direct mechanisms for reimbursing providers. This paper examines how different provider payment
models affect the quality and uptake of GenAI tools in clinical settings. We develop a theoretical
framework that captures the strategic interplay between a developer, who sets the quality and usage
fee of a GenAI tool, and a healthcare provider, who decides on usage in response to the reimbursement
structure. We show that without reimbursement, providers restrict GenAI usage to more complex
cases, leading to suboptimal quality and limited uptake. Fee-for-service models, while encouraging
widespread use at high reimbursement rates, can lead developers to compromise on quality. Con-
versely, lower reimbursement rates may incentivize higher quality but still fall short of the socially
optimal level. We propose a hybrid payment model that integrates fee-for-service with value-based
payments, showing that aligning developer and provider incentives requires defining value metrics
based on the quality of the GenAI tool itself, rather than the benefits it delivers. Interestingly, in this
model, as development costs rise, the minimum fee-for-service needed to align incentives decreases.
Our paper demonstrates how the interplay between the downstream and upstream dynamics of
GenAI tools in healthcare influences their quality and drives their uptake.
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1. Introduction
The ongoing boom in generative artificial intelligence (GenAI) began with OpenAI’s ChatGPT,
which launched on November 30, 2022, and reached 100 million users in just two months (Wachter
and Brynjolfsson 2024). Originally a text-only tool, ChatGPT has evolved to support a wide range
of input and output formats. It has also spurred the development of a variety of multimodal GenAI
tools, including Anthropic’s Claude, Google’s Gemini, and Meta’s LLaMA, along with GenAI-based
enterprise solutions from companies such as Microsoft, Oracle, and Salesforce. Applications of GenAI
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in routine healthcare include interpreting various types of medical data—such as text, voice, medical

images, lab results, and electronic health records—and generating outputs such as visit summaries,

scripts, assessments and plans, and image annotations (Omiye et al. 2024). According to a March

2024 survey by McKinsey, more than 29% of healthcare organizations have incorporated AI-based

GenAI tools into their workflows (Lamb et al. 2024).

The widespread adoption of GenAI tools in medical practice raises questions about how to compen-

sate providers for using such tools. Addressing this question presents novel challenges for policymakers

and payers for two reasons. First, the quality of GenAI tools can vary depending on the developer’s

level of customization, which stands in stark contrast to pre-GenAI tools. Most pre-GenAI tools—

often based on computer vision models (Dai and Abràmoff 2023)—are designed for specific medical

conditions or patient populations, with inflexible inputs and outputs, marketed as black-box devices

that generally cannot be modified once approved by the FDA (Lai et al. 2024). By contrast, GenAI

tools often require customization for real-world application, are rarely subject to FDA clearance, and

exhibit varying quality levels.1 Conceivably, the payment model for using these tools can impact the

customization process and, in turn, the quality of these tools. Second, unlike pre-GenAI tools for

which the variable cost of using them is often negligible, the variable costs of using Gen-AI tools are

significant (Goldman Sachs 2024), necessitating usage-based pricing (Rand 2023).

Compensating physicians for acquiring and using AI under the Medicare Physician Fee Schedule

(PFS) presents a multifaceted challenge. The Centers for Medicare & Medicaid Services (CMS) has

historically treated the costs associated with AI tools not related to medical decision-making as

indirect, effectively excluding them from the PFS methodology (CMS 2021). This classification has

faced pushback, prompting CMS to implement temporary workarounds to align payment rates for

AI-related services with those for similar services. These temporary measures, however, are not viable

as long-term solutions. CMS is actively working to adapt the PFS to reflect the growing role of AI

tools as part of routine healthcare delivery (Zink et al. 2024).

In this paper, we examine how payment structures influence both the uptake of GenAI tools

(downstream) and the quality of these tools (upstream). Several research questions guide our analysis:

Is the status quo—in which providers receive no direct payment for using AI tools—sufficient? If not,

how do commonly used payment systems, such as fee-for-service and value-based payment models,

compare? Finally, can the physician payment model be designed to achieve the first-best outcome

that maximizes social welfare?

1 In the rest of the paper, we use “AI” and “GenAI” interchangeably unless otherwise noted. In other words, the
AI tools we refer to exclude those influencing medical decision-making (e.g., diagnosis, treatment, and cure)—an
important topic but beyond the scope of this paper.
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To address these questions, we develop a parsimonious model to investigate the effects of provider
payment structures on the quality and usage of GenAI tools. The model captures the strategic
interaction between an AI developer and a healthcare provider, bridging upstream and downstream
perspectives. The AI developer sets the tool’s quality and price based on expected usage and devel-
opment costs; the healthcare provider, typically a physician, decides on its use for a case by weighing
clinical complexity, the cost of using AI, reimbursement (zero under the status quo), and the expected
benefit from AI. By examining different payment models—including the status quo, fee-for-service,
and hybrid scenarios—we analyze how economic incentives influence both the quality of the AI tool
and the extent of its clinical use.

We begin by analyzing the status quo scenario, in which the provider is not reimbursed for using
GenAI in medical practice. In this setting, we examine the decisions made by both the AI developer
and the healthcare provider. Specifically, the developer determines the quality of the AI system
and sets the price per use, whereas the provider decides whether and for which patients to use
the AI tool, based on the associated costs and expected benefits. Our analysis reveals that without
reimbursement, the provider uses the AI tool only for more complex patient cases, where the benefits
justify the costs. The developer sets a price and quality level that balances the cost of developing a
higher-quality product with the provider’s willingness to pay. At equilibrium, the developer selects
a price that maximizes profit, resulting in a quality level below the socially optimal standard and
leaving only a proportion of the patients who could benefit from the AI receiving it. The intuition is
that without reimbursement, the financial burden of using the AI tool rests solely on the provider,
limiting its widespread use even when it could benefit more patients. As a result, developers have
little incentive to invest in higher-quality AI, because the limited provider usage does not justify the
additional costs of developing higher-quality tools.

Next, we examine the fee-for-service payment system, a prevalent reimbursement model for pre-
GenAI tools (Parikh and Helmchen 2022; Wu et al. 2023) and one considered instrumental in pro-
moting the use of AI in routine healthcare practice due to its simplicity and financial predictability
(Abràmoff et al. 2024). Under this model, the provider receives a fixed reimbursement rate for each
patient on whom AI is used. Our analysis reveals several key insights. The provider’s AI usage
depends on the reimbursement rate, ranging from no usage to partial or full adoption across all
patients. The developer’s optimal strategy is similarly contingent on the reimbursement rate. If the
fee is sufficiently high, the developer minimizes quality to reduce costs while setting the price equal
to the fee, leading to AI usage for all patients. At a lower reimbursement rate, the developer increases
quality to justify the price, but the quality still falls short of the socially optimal level, and AI uptake
is limited to a subset of patients. Whereas the fee-for-service model promotes broad AI usage at
high reimbursement levels, it falls short of achieving first-best outcomes. Specifically, it incentivizes
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developers to tailor quality to reimbursement rates rather than optimizing for social welfare, resulting
in inefficiencies in both quality and usage.

Our analysis of the fee-for-service payment system aligns with perspectives in health economics,
such as those by Zink et al. (2024) in a recent JAMA Internal Medicine article, on the implications of
reimbursing healthcare providers for the full cost of acquiring AI tools. Specifically, Zink et al. (2024)
argue such reimbursement can incentivize providers to use AI even when unnecessary, leading to
wasteful healthcare spending. However, their argument assumes the quality of AI tools is exogenous
and independent of the provider payment model. By accounting for the endogenous quality of AI tools,
our analysis enriches this perspective to reveal the upstream effects of provider payment schemes.
Full cost coverage can distort the incentive structure for AI developers. When reimbursed for the full
costs of acquiring and using AI, providers often extend its application broadly across all patients.
This usage pattern dampens developers’ incentives to improve the quality of their AI tools. Our
finding highlights the importance of jointly evaluating the usage and quality implications of AI tools
within a fee-for-service payment framework.

Finally, given the inefficiencies inherent in both the status quo of no reimbursement and the fee-for-
service system, we propose a hybrid payment model to better align the incentives of both providers
and AI developers. This model integrates elements of the fee-for-service approach with those of a
value-based payment system. However, the concept of value in healthcare is notoriously ambiguous
(Reinhardt 2016). We explore two potential definitions of value in the context of AI in healthcare:
(1) value as the benefit derived from the use of the AI tool, and (2) value as the quality of the
AI tool itself. Under the benefit-based definition, we find a value-based payment system tends to
favor the treatment of more complex patients, providing limited incentives for providers to use AI
in less-complex cases. This incentive can lead to suboptimal outcomes where AI is underutilized in
less complex cases, even when it could be beneficial to those patients. By contrast, the quality-based
definition incentivizes providers to prioritize the use of higher-quality AI tools, with these incentives
independent of patient complexity.

We find a quality-based payment system works best when physician altruism is relatively low.
Although more altruistic physicians leading to better outcomes may seem intuitive, we show that
when altruism is high, physicians become less responsive to financial incentives, resulting in selective,
rather than broad, use of AI. This reduces the effectiveness of the payment system in ensuring the
socially optimal full patient coverage. On the other hand, when altruism is lower, the payment model
is more successful in encouraging physicians to use AI across all patients.

When the quality-based payment system proves ineffective under high levels of physician altruism,
we propose a hybrid payment system that compensates providers through a combination of fee-
for-service and quality-based payments. We show that, as long as the fee-for-service payment is
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sufficiently high, this hybrid model induces providers to choose the first-best quality level. At the
same time, it incentivizes providers to use the AI system for the same patient population as in the
first-best scenario. This hybrid approach offers a promising solution to balance the dual goals of
promoting appropriate use and ensuring high quality of AI tools.

Interestingly, as the cost of developing the AI system increases, we find the minimum required fee
per service decreases. Although this may seem counterintuitive, the reason is that higher development
costs lead to a lower optimal quality level in the first-best scenario, thereby requiring less intensive
incentives to induce the first-best outcome.

Our paper represents a first attempt to understand the tension between upstream development
efforts and downstream deployment decisions for medical AI. As noted above, CMS currently con-
siders the costs of using GenAI tools by healthcare providers to be indirect and, therefore, does not
reimburse them for using AI. However, CMS has demonstrated a willingness to experiment with
innovative payment models to encourage the adoption of medical AI tools, particularly in light of
the ongoing boom in GenAI, which is poised to transform much of healthcare (Zink et al. 2024). Our
paper provides a theoretical foundation for policymakers as they navigate the trade-offs of various
provider payment models. The proposed coordinated payment model, which combines fee-for-service
with value-based payments, aligns with industry trends toward payment reforms designed to facilitate
the integration of medical AI tools into routine care (Abràmoff et al. 2024).

2. Literature
Our paper contributes to several streams of literature: (1) physician payment models, (2) the eco-
nomics and operations of AI, and (3) human-AI interaction. Our paper is also conceptually related
to the new technology adoption literature.

First, provider payment models have emerged as an important topic in the healthcare operations
management literature (Betcheva et al. 2021; Dai and Tayur 2020; Keskinocak and Savva 2020).
The literature stream has explored prospective payment systems (Dada and White 1999), bundled
payment models (Adida et al. 2017; Andritsos and Tang 2018; Guo et al. 2019; Vlachy et al. 2023),
hospital readmissions reduction programs (Andritsos and Tang 2018; Arifoğlu et al. 2021; Zhang
et al. 2016), reference pricing (Nassiri et al. 2022; Savva et al. 2019), out-of-pocket expenses (Dai
et al. 2017), referral services (Adida and Bravo 2019), outcomes-based reimbursement (Adida 2021;
Xu et al. 2022; Zorc et al. 2023), and payment models for diagnostic services (Adida and Dai 2024).
To our knowledge, no prior work has examined provider payment models in the context of AI tools,
where both upstream (AI development) and downstream (AI deployment) decisions are intertwined.

Our work also connects to another strand of the health care operations management literature
that examines the misalignment of incentives between an upstream producer (e.g., a pharmaceutical
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manufacturer) and a downstream user (e.g., a healthcare provider); see, for example, Chick et al.
(2008), Taylor and Xiao (2014), Xu et al. (2022), and Zhang et al. (2020). Departing from this
literature, we study a situation where the downstream user’s actions benefit the end users (patients)
but do not directly benefit themselves in that the healthcare provider is reimbursed by a third party.2

By comparison, in the literature, the downstream users’ actions are usually directly tied to their
revenue. Because of this key difference, the design of the provider payment model is key to aligning
upstream development and downstream deployment decisions.

Second, our paper contributes to the growing literature on the economics and operations of AI,
addressing both upstream and downstream considerations. For instance, Gurkan and de Véricourt
(2022) examine the AI flywheel effect, where predictive models improve as larger training datasets
lead to more accurate predictions, which in turn generate additional data from broader use. They show
firms often provide datasets larger than optimal, fostering effective monitoring of developer effort and
initiating a virtuous cycle of product improvement. In the context of medical AI devices, Dai and
Tayur (2022) emphasize the importance of physician buy-in and patient acceptance for successful
integration, outlining service-design principles to facilitate both, building on earlier research that
explores how physicians’ use of AI impacts their professional reputation (Dai and Singh 2020) and
how the sequencing of service activities shapes customer experiences (Das Gupta et al. 2016; Li et al.
2022). Agrawal et al. (2024) highlight the need for system-wide organizational changes to support
AI adoption, particularly in settings with interdependent decisions, where modular structures reduce
disruptions and coordinated processes enhance AI’s effectiveness. Perhaps most relevant to our work,
recent commentaries in medical journals, such as those by Abràmoff et al. (2024) and Parikh and
Helmchen (2022), address the challenges of compensating providers for using predictive AI tools
without formalizing their ideas. Different from existing work, our paper focuses on GenAI tools in
healthcare, which present unique challenges, including extensive customization requirements that
drive the quality of such tools.

Third, our work also contributes to the literature on human-AI interaction. de Véricourt and
Gurkan (2023) study the case where a decision-maker is uncertain about the accuracy of an AI
algorithm and updates his belief about its accuracy by interacting with it over time. Grand-Clément
and Pauphilet (2023), in a continuous, general-prediction framework, contend the optimal AI algo-
rithms are not necessarily those with the highest levels of predictive accuracy, but those that take
into account the downstream adherence behavior of users. They develop an adherence-aware opti-
mization framework to address the accuracy-adherence tradeoff. Recent research has increasingly
focused on the effectiveness of integrating AI with human judgment to improve decision quality in

2 Requiring patients to pay for AI solutions out of pocket, although possible, is a source of health inequity and not a
sustainable solution (Abràmoff et al. 2024).
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areas such as healthcare (Mullainathan and Obermeyer 2021; Orfanoudaki et al. 2022) and retail
(Karlinsky-Shichor and Netzer 2024). One possible mechanism of synergy may be that AI improves
predictive accuracy, whereas humans provide interpretation and contextual insights (Agrawal et al.
2018). Similarly, Boyacı et al. (2024) document accuracy gains from human-AI collaboration, albeit
at some cognitive cost to human agents. Other studies similarly highlight that human oversight of AI
decision-making improves outcomes and can support cognitive growth in the workplace (Chen et al.
2022; Kim et al. 2024). To our knowledge, none of these papers examines how the incentive structure
for downstream use of AI affects upstream AI development. By modeling the impact and optimal
design of provider payment models, our work has broader implications for aligning AI development
and deployment with societal goals.

Finally, our paper is conceptually related to the new technology adoption literature (e.g., Cho and
McCardle 2009; Cohen et al. 2016; Kundu and Ramdas 2022; Uppari et al. 2019; Zhang and Lee
2022), which has examined the interaction between a technology supplier’s quality decision and a
buyer’s technology adoption decision in the face of a heterogeneous patient population. Unlike these
papers, which study the decision to adopt an exogenous technology, our paper examines how to
pay the healthcare provider for using the technology, which involves a third party (the payer); the
payment system itself may influence the endogenous decision about the quality of the technology as
well as how the technology is used. Put differently, our paper advances this literature by examining
the interaction between the development and deployment of technology as shaped by the incentive
environment designed by a third party.

3. Model
In this section, we describe our model setup and notation system. Our model captures the interaction
between an AI developer and a healthcare provider serving patients. Accordingly, it is divided into
two phases: (1) AI development and (2) AI deployment.

In the first stage (AI development), the AI developer decides on the quality and price of the AI
system such as an ambient listening AI tool (e.g., Tierney et al. 2024). Specifically, the developer
determines the quality level, q, and sets a price, p, for using the AI system on a per-use (i.e., per-
patient) basis.3 The quality of the AI system, denoted by q, is directly tied to the resources invested
by the developer, such as time, staffing, and computational power; substantial fine-tuning activities
are required to ensure quality before deploying an AI model for clinical use (Yaraghi 2024). The cost
to the developer for choosing a quality level q is given by cq2, where c represents the quality cost
coefficient. This quadratic cost function reflects the increasing marginal cost of improving quality, a

3 Charging healthcare providers for the use of GenAI on a per-use basis is a common practice (Cohen and Toubiana
2024), in no small part because of the non-trivial variable costs associated with using AI (Rand 2023).



8 Adida and Dai: Provider Payment Models for Generative AI in Healthcare

standard assumption in the literature (see, e.g., Lahiri and Dey 2013; Moorthy 1988). The developer’s
objective is to choose a quality level q > 0 and a price p > 0 that balance the cost of development
with the expected revenue from selling the AI tool to the provider. The trade-off involves setting
a price that maximizes profit while ensuring the quality is adequate for the provider to use the AI
tool. Alternatively, the developer can opt out, resulting in no participation and no profit. We use a
tie-breaking rule such that if indifferent, the developer does not participate.

In the second stage (AI development), the healthcare provider decides whether and how to use the
AI tool in each patient case, based on the quality and price of the AI tool. Patients are heterogeneous
with respect to their complexity level, which we denote by x ∈ [0,1]. For simplicity of analysis, the
complexity level is assumed to follow a uniform distribution over the interval [0,1], and the total
number of patients is normalized to one. The provider selects a subset of patients, denoted by the
interval [x1, x2] ⊆ [0,1], on whom to apply the AI tool. The provider’s objective consists of both the
costs incurred and the benefits derived from using the AI tool. Specifically, the provider’s utility
function incorporates the per-use fee charged by the developer and the patient welfare. The welfare
term reflects the provider’s altruism, represented by a constant δ, which weighs the patient benefit
relative to the provider’s costs. This mixed-incentive model aligns with the literature on physician
agency (Bester and Dahm 2017; Gaynor et al. 2023; Jelovac 2001; McGuire 2000), reflecting that
providers balance their financial considerations with the quality of care they deliver. We use a tie-
breaking rule such that if indifferent, the provider does not use the AI.

A patient with complexity x can be treated with or without the GenAI tool, where the benefit
of using the tool is modeled as B(x, q) = b · q · x, with b capturing the economic value of enhanced
care. This benefit increases with both the quality of the GenAI tool (q) and the complexity of the
patient’s condition (x). For example, ambient listening systems, which automate electronic health
record (EHR) documentation, enable physicians to pay undivided attention to patients, particularly
in complex cases where documentation burdens are high (Topol 2019). For simpler cases with minimal
documentation needs, the incremental benefit of such tools is smaller, because these cases can be
effectively managed even without AI. The value of the GenAI tool depends critically on its quality.
High-quality tools integrate seamlessly into clinical workflows, improving documentation accuracy
and reducing physician workload (Cohen and Toubiana 2024). Providers must balance the cost of
using these tools against the anticipated benefits, weighing whether its benefits justify the price of
high-quality AI. This balancing creates a trade-off for providers: high-quality tools enhance care for
complex cases but come with higher costs. Providers optimize this trade-off by selectively using AI
tools in scenarios in which the benefits outweigh the costs.

Our model captures the strategic decisions of both the AI developer and the healthcare provider,
reflecting the interplay between AI development and deployment. In addition, our model incorporates
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the role of a payer who must determine whether and how to reimburse providers for using GenAI
tools. We first analyze two provider payment models: (1) no reimbursement, reflecting the status quo;
and (2) fee-for-service reimbursement, where providers receive a per-use payment for using GenAI
tools. Our analysis evaluates the impact of these payment models on the quality, pricing, and usage
of GenAI tools. By comparing these outcomes with the first-best scenario, in which social welfare
is maximized, we highlight inefficiencies inherent in the considered models. Furthermore, we explore
whether reimbursement rules can be redesigned to achieve first-best outcomes. In doing so, we explore
novel payment models that align the incentives of AI developers and healthcare providers.

3.1. Discussion on Modeling Assumptions

We make several simplifying assumptions to be aligned with the health economics and healthcare
operations management literature, and, in certain cases, to make our model tractable.

First, we conceptualize the physician’s goal as maximizing a weighted sum of her direct financial
payoff (compensation from the payer minus the fee paid to the AI developer) and patient welfare.
Accounting for financial incentives in physician decision-making is prevalent in both the health eco-
nomics (e.g., Bester and Dahm 2017; Jelovac 2001) and healthcare operations management (e.g.,
Adida and Dai 2024; Guo et al. 2019) literature. Our model incorporates this consideration by includ-
ing a term proportional to the patient’s utility in the physician’s objective function. This approach
internalizes the physician’s concern for the patient’s welfare.

Second, we posit that the benefit to the patient of using the AI tool increases linearly with both
the quality of the tool and the complexity of the case. This linear assumption is made primarily for
tractability. In real-world scenarios, the benefits of AI tools may exhibit non-linear characteristics
due to various factors, such as diminishing returns to quality improvements. Nevertheless, we expect
our main results to remain robust as long as the relationship between utility, quality, and patient
complexity is monotonic and concave.

Third, we study a pricing scenario where the price of the AI tool is fully endogenous and set by
the AI developer. This endogenous pricing assumption allows us to analyze the strategic behavior
of the AI developer in setting the optimal price that balances potential revenues and development
costs. However, scenarios exist in which prices may be exogenously determined due to factors such
as the market power of the provider or budget constraints. Nevertheless, our core findings are robust
and applicable even under such exogenous pricing conditions. We can show the qualitative nature
of our results remains unchanged when prices are externally imposed, as the fundamental trade-offs
between cost, quality, and adoption persist.

Fourth, we focus on the physician’s decision to use AI and treat it as independent from the patient-
specific decision-making process. The reason is that the decision to adopt the AI system is often made
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before the patient’s precise condition is revealed. In this way, the AI adoption is seen as a general

choice made upfront based on a basic understanding of the case complexity.

Finally, we assume the payer determines the provider payment model before the AI developer

sets the price. This assumption allows us to examine how different reimbursement models, such

as fee-for-service or value-based payments, affect the developer’s pricing and quality decisions and

the subsequent provider’s AI use decisions. Even if in some cases the price may be set before the

reimbursement policy, the fundamental relationships between quality, price, and reimbursement in

our model remain valid across different timing structures.

3.2. Benchmark Equilibrium: First-Best Scenario

In the first-best scenario, the goal of a social planner is to select both the quality level of the AI tool

and the set of patients on whom the tool is used to maximize total welfare. This welfare is defined as

the combination of patient benefits and quality costs, where the price represents an internal cash-flow

exchange and does not affect the first-best outcome.

The social planner has the option of either not participating (resulting in an objective value of

zero) or participating if a positive objective value can be achieved by selecting an optimal quality

level and identifying the appropriate set of patients to benefit from the AI tool. If the social planner

chooses to participate, the goal is to maximize the following objective function:

−cq2 + bq

∫ x2

x1
x dx= −cq2 + bq · x

2
2 −x2

1

2 ,

where q represents the quality level of the AI tool, c is the cost coefficient associated with quality, b

is the benefit scaling parameter, and x1 and x2 denote the range of patient complexity levels. The

integral term
∫ x2

x1
x dx reflects the aggregate complexity of the patient population, indicating the

social planner prioritizes using AI on higher-complexity patients due to their greater potential benefit

from AI assistance.

Lemma 1. In the first-best scenario, the social planner chooses to participate, and the socially

optimal quality level is given by qF B = b
4c

. Under this optimal quality level, the social planner uses

the AI tool for all eligible patients within the specified complexity range.

Lemma 1 highlights that the socially optimal quality level balances the marginal benefits of increas-

ing quality with the marginal costs. The optimal quality qF B = b
4c

ensures the AI tool is used effec-

tively across all eligible patients, maximizing social welfare. This benchmark equilibrium serves as a

reference point for comparing outcomes under different reimbursement scenarios throughout the rest

of the paper.
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4. Analysis of Provider Payment Models
In this section, we examine two payment models for providers using the GenAI tool. The first model
represents the status quo in the U.S., where the provider receives no reimbursement for using these
technologies. The second model aligns with the fee-for-service approach, where the provider is reim-
bursed on a per-use basis for using the GenAI tool.

4.1. Status Quo: No Reimbursement
Under the current reimbursement framework, the U.S. Centers for Medicare & Medicaid Services
(CMS) consider the costs associated with the acquisition and use of GenAI to be indirect, treating
them similarly to office equipment and software (CMS 2021). As a result, physicians do not receive
direct reimbursement for incorporating AI into clinical practice. To analyze this scenario, we inves-
tigate the physician’s decision to use AI and the developer’s decision regarding the quality of AI in
the absence of reimbursement.

In the first stage, the AI developer aims to maximize their profit by solving:

max
p,q>0

− cq2 + p(x2 −x1),

where the parameters x1 and x2 are determined in the second stage and may depend on the selected
price p and quality q.

In the second stage, given the price p and quality q decisions made by the developer, the provider
solves:

max
x1,x2

− p(x2 −x1) + δbq

∫ x2

x1
xdx

= −p(x2 −x1) + δbq
x2

2 −x2
1

2 .

Before determining the developer’s decisions, we first derive the provider’s optimal decision in
response to the developer’s given price and quality choices:

Lemma 2. In the second stage, given the price p > 0 and quality q > 0 selected by the developer,
the provider uses the AI on some patients if and only if p < δbq. In this case, the provider uses the
AI for patients with complexity x∈

[
p

δbq
,1
]
.

The intuition behind this result is that AI will be used only when its quality is sufficiently high or
its price is low relative to the benefits derived from patient welfare. Because the benefits of using AI
are greater for more complex patients, whereas the costs remain uniform across patients, AI is used
for the most complex cases.

Proposition 1. In the first stage, the developer opts to participate and selects a price p∗ = (δb)2

16c

and quality q∗ = δb
8c

. In the second stage, the provider uses the AI on half of all patients, specifically
those with complexity x∈

[ 1
2 ,1
]
.
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Proposition 1 has several implications. First, as long as the altruism parameter δ is less than 2, the
equilibrium quality of the AI tool is lower than the socially optimal quality level. This result reveals
a source of inefficiency in the absence of reimbursements, where the quality of the AI tool does not
reach its potential socially optimal value, due to insufficient financial incentives for the developer
under the status quo. Second, the proposition means that, regardless of the parameter values, only
half of the patients receive AI treatment in the equilibrium scenario, in contrast to the first-best
scenario (see Lemma 1) where all patients would benefit from the AI tool. This disparity highlights
a gap between the equilibrium and the socially optimal outcome. Third, efforts aimed at influencing
the provider’s degree of altruism (δ)—also referred to as patient-centeredness (Bergeson and Dean
2006)—or modifying the development cost (c) are insufficient to fully align the equilibrium outcome
with the first-best scenario. Although increasing the altruism parameter to a high level would align
the quality level with first-best, it would not address the discrepancy in the proportion of patients
receiving AI treatment.

In conclusion, the absence of reimbursement for AI tools under the status quo hinders the attain-
ment of socially optimal outcomes. This realization motivates the need to explore alternative reim-
bursement models that better align the incentives of the AI developer and the healthcare provider.

4.2. Fee-for-Service Reimbursement

We now examine a fee-for-service payment system, which has been the primary method of reimbursing
providers for the use of FDA-approved AI devices (Parikh and Helmchen 2022; Wu et al. 2023). The
simplicity of the fee-for-service model makes it an attractive option for reimbursing physicians for
the use of AI tools (Abràmoff et al. 2024).

Under the fee-for-service payment system, the provider receives a reimbursement for each patient
on whom AI was used. This reimbursement f represents the fixed amount paid to the provider per
use of the AI tool.

In the second stage, given the quality decision q and the price decision p chosen by the developer in
the first stage, the provider aims to maximize his net benefit from using the AI tool. The provider’s
problem can be formulated as

max
x1,x2

(f − p)(x2 −x1) + δbq

∫ x2

x1
xdx

= (f − p)(x2 −x1) + δbq
x2

2 −x2
1

2 ,

where x1 and x2 denote the range of patient complexity, δ is the provider’s degree of altruism, and
b is the utility scaling parameter.

In essence, the provider’s problem under the fee-for-service model mirrors the problem without
reimbursement, but with one important modification: the price p is adjusted by the reimbursement
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f . Specifically, the effective price considered by the provider is p− f . This adjusted price can be
positive or negative, depending on the magnitude of f . If f is large enough to exceed p, the effective
price becomes negative, indicating a net gain to the provider per use of the AI tool.

This adjustment reflects the economic rationale that higher reimbursements foster broader adoption
of AI tools, because they reduce the net-cost burden on providers. Conversely, if reimbursement is
inadequate, the net cost may still deter providers from using the AI tool, particularly for less complex
patients for whom the perceived benefit does not outweigh the cost. The provider’s decision is thus
influenced by the balance between the reimbursement received and the price paid, which ultimately
affects the range of patient complexity x for which the AI tool is used. We characterize the provider’s
decision in the following lemma.

Lemma 3. In the second stage, given the quality decision q > 0 and price decision p > 0 selected
by the developer in the first stage,
(i) if f ≥ p, the provider uses AI on all patients;

(ii) if p− δbq ≤ f < p, the provider uses the AI on patients with complexity x∈
[

p−f
δbq

,1
]
;

(iii) else, the provider does not use AI.

The intuition behind Lemma 3 is straightforward: a high fee motivates the provider to use AI for
all patients. At intermediate fee levels, the provider limits AI use to more complex cases, with usage
increasing as the fee increases. When the fee is too low, the provider avoids using AI entirely.

This lemma aligns with the economic arguments presented in the recent commentary by Zink et al.
(2024), which emphasizes the need to avoid full cost coverage of AI by payers to mitigate inefficiencies
in the healthcare system. According to Zink et al. (2024), reimbursing the full cost of AI services may
result in overutilization and excessive healthcare spending, because providers have little incentive to
limit the use of AI tools when the financial burden is entirely borne by the payer. Their argument,
however, assumes AI quality is exogenous and unaffected by the reimbursement model. Our analysis
enriches their argument by highlighting that covering the full cost of AI can also undermine the
incentive structure for AI developers. Specifically, as we see next, when payers cover the entire cost
of AI services, developers are less motivated to invest in enhancing the quality of their AI systems.
This guaranteed reimbursement creates a financial cushion that diminishes the pressure to improve
AI performance.

The proposition below characterizes the developer’s decision in the first stage. For ease of presen-
tation, we define

φ(q, f) = 8δbcq3 − δ2b2q2 + f2.

Proposition 2. In the first stage, the developer’s optimal decisions are as follows:
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(i) If f ≥ δ2b2

27c
, the developer sets the quality at q = ϵ (i.e., as small as possible) and the price at

p= f . In this scenario, the provider uses AI on all patients.
(ii) If f < δ2b2

27c
, the optimal decisions are to set the quality at q̄2, the unique solution in q of φ(q, f) =

0 on [δb/(12c),∞), and the price at p̄2 ≡ (δbq̄2 + f)/2. In this case, the provider uses AI on
patients with complexity [1/2 − f/(2δbq̄2),1].

Proposition 2 can be interpreted as follows. When the fee per patient using AI is high, the developer
anticipates AI to be used for all patients. As a result, the developer selects the quality level to be low,
minimizing costs, and sets the price equal to the reimbursement to maximize revenue while ensuring
AI usage. When the fee is less high, quality is intermediate and AI is used only on a fraction of
patients.

Note ∂φ(q, f)/∂q = 2δbq(12cq− δb) is positive on [δb/(12c),∞). It follows that the quality level q̄2,
the unique root in q of φ(q, f) on [δb/(12c),∞), must increase as f decreases to maintain φ(q, f) = 0.
This property indicates an inverse relationship between the fee and the quality: lower fees necessitate
higher quality to ensure equilibrium conditions are met. Hence, we have the following corollary:

Corollary 1. (i) The quality of the AI tool q∗ weakly decreases as the reimbursement rate f
increases.

(ii) The price of the AI tool p∗ increases with the reimbursement rate f .

Conventional health-policy discourse contends that low reimbursement rates are responsible for
poor quality in medications (Hernandez 2023) and limited access to healthcare services (Alexander
and Schnell 2024). However, Corollary 1(i) reveals this intuition may not apply to physicians’ use
of AI tools: higher reimbursement rates can, seemingly paradoxically, lead to lower quality. The
mechanism driving this result lies in the behavior of AI developers. Increased reimbursement expands
the provider’s use of the AI tool across a broader range of patients. Anticipating this wider market,
developers may strategically reduce the quality of their tools to minimize development costs while
maintaining substantial market share.

Importantly, this finding does not negate the idea that higher reimbursement enhances patient
access. Instead, it highlights the trade-off between access and quality in designing provider payment
models. To achieve both goals, policymakers must carefully consider how reimbursement structures
influence developer incentives.

In light of Lemma 3, Corollary 1 implies that although lower reimbursement rates may encourage
higher quality by limiting the financial pressures on developers to reduce costs, they also restrict
the provider’s use of AI to a narrower subset of patients. This finding reflects a constrained market
environment where both quality and price are adjusted downward. Consequently, setting reimburse-
ment rates too low risks undermining the broader uptake of AI tools, reducing their potential societal
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benefits. Policymakers, therefore, face the challenge of striking a balance between ensuring quality

and accessibility in the reimbursement design, aiming to achieve both in tandem.

Corollary 2. The fee-for-service payment model does not achieve coordination with the first-
best outcome. Moreover, when δ < 1.5, the quality level under fee-for-service is strictly lower than the
first-best quality.

Corollary 2 builds on Corollary 1 by highlighting the consequence of the tension between accessibil-

ity and quality of AI tools inherent within the fee-for-service payment system. Specifically, setting the

fee-for-service rate f high enough may align the coverage of AI services with the first-best scenario,

ensuring all patients have access to the AI tool. However, this full coverage comes at the cost of signifi-

cantly diminished quality—the quality level would approach zero, far below the first-best benchmark.

Conversely, reducing the fee could lead to improvements in quality, but these improvements would

still fall short of the first-best standard, and the reduction in fee would simultaneously decrease the

number of patients who receive AI services. This trade-off reveals the fee-for-service model’s limita-

tions in balancing quality and accessibility, calling for a better-designed payment scheme, which we

examine in the next section.

5. Value-Based Provider Payment: Benefit vs. Quality
Given the inefficiencies inherent in both the no-reimbursement status quo and the traditional fee-

for-service system, we now explore alternative payment models that can more effectively align the

incentives of providers and AI developers.

One potential remedy is value-based payment models, which have gained traction as alternatives

to traditional fee-for-service systems by aiming to incentivize providers based on the value they

deliver, rather than the volume of services provided (Abràmoff et al. 2024; Adida and Bravo 2019).

However, despite its popularity, value-based payment is not without challenges—chief among them is

the difficulty in precisely defining what “value” means in the context of healthcare (Reinhardt 2016).

In this section, we examine two potential definitions of value in the context of AI in healthcare: (1)

value as the benefit derived from the use of the AI tool, and (2) value as the quality of the AI tool

itself. These definitions guide our analysis of how different payment models can impact the adoption

and quality of AI technologies.

5.1. Benefit-Based Payment

We start with considering a payment structure whereby reimbursement is tied directly to the benefit

provided by the AI tool in improving patient outcomes, formalized as f + γB, where f and γ are

constants, and B represents the value delivered to the patient.
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Given the developer’s quality decision q and price decision p in the first stage, the provider solves:

max
x1,x2

∫ x2

x1
(f + γbqx− p)dx+ δbq

∫ x2

x1
xdx= (f − p)(x2 −x1) + (γ+ δ) bqx

2
2 −x2

1

2 .

This formulation shows the benefit-based payment model intensifies the provider’s incentives to
deliver value, as captured by δ+ γ. However, this model is inherently biased toward more complex
cases, because they generate higher measurable benefits. Consequently, providers are incentivized to
prioritize more complex patients, resulting in a misalignment with the first-best scenario, where care
would be optimally distributed across all patient types.

Lemma 4. No benefit-based payment can achieve the first-best outcome.

The intuition behind Lemma 4 is that although the benefit-based payment model strengthens
incentives for high-quality care by tying reimbursement to the benefit generated by the use of AI, it
inherently favors more complex cases. Under this model, providers receive higher reimbursement for
using AI on complex patients because these cases yield greater measurable value.

Paying providers based on the benefits delivered, although theoretically more appealing than the
status quo or the fee-for-service model, disproportionately incentivizes care for more complex patients.
For this reason, this intuitive design can end up widening disparities in access to AI tools, leaving
less complex cases underserved.

5.2. Quality-Based Payment

Given the limitations of the benefit-based model, we next explore a payment structure that aligns
provider incentives with the intrinsic quality of the AI tools themselves. Specifically, we consider a
reimbursement scheme of the form γq, where q denotes the quality of the AI tool and γ is a constant.

This approach is designed to align both upstream and downstream incentives by encouraging
developers to invest in higher-quality AI systems while ensuring providers are motivated to use these
tools appropriately across different patient complexities. Under this model, the provider’s decision-
making process, given the quality decision q and price decision p by the developer, is captured by:

max
x1,x2

∫ x2

x1
(γq− p)dx+ δbq

∫ x2

x1
xdx= (γq− p)(x2 −x1) + δbq

x2
2 −x2

1

2 .

Here, the provider’s use of AI is contingent on the following conditions:
• If p− γq ≤ 0, the provider uses AI for all patients.
• If p− (γ+ δb)q ≤ 0< p− γq, AI is used only for patients with complexity x∈

[
p−γq
δbq

,1
]
.

• Otherwise, the provider does not use AI.
To determine the quality, q, and the price, p, the developer faces two potential optimization problems:
one that results in full coverage and another that leads to partial coverage. The solution entails
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comparing the payoffs associated with each scenario. Coordination is achieved only when the full-
coverage case dominates the partial-coverage case, as the social optimum corresponds to full coverage.

The following proposition provides the necessary and sufficient condition for the quality-based
payment system to coordinate the system:

Proposition 3. Setting γ = b
2 enables the quality-based payment scheme to align decisions with

the first-best outcome when δ ≤ 1
2 . However, when δ > 1

2 , the provider uses AI on only a subset of
patients, thereby making coordination unattainable.

Proposition 3 show that, under appropriate conditions, a quality-based payment model can align
the incentives of the AI developer and healthcare provider, achieving a first-best outcome. The
conditions reveal a counterintuitive relationship between physician altruism, denoted by δ, and the
effectiveness of quality-based payment systems in achieving the social optimum. Conventional wisdom
in health policy suggests inefficiencies arise primarily from physicians being insufficiently patient-
centric (i.e., δ is too low). This perspective is behind many policy reforms aimed at fostering patient-
centered care by increasing the emphasis on patient welfare (i.e., increasing δ), thereby potentially
reducing the role of financial incentives in shaping physician behavior. However, the above proposition
presents a paradox: for a quality-based payment system to align physician actions with the first-best
outcome, δ must be sufficiently small. Specifically, when δ ≤ 1

2 , setting the quality coefficient γ at b/2
optimally balances the trade-offs between quality care and cost efficiency, incentivizing physicians to
make decisions that align with the socially optimal outcome.

As δ increases, the physician’s intrinsic motivation to prioritize patient outcomes renders finan-
cial incentives less effective. In the case in which δ > 1

2 , the second optimization problem becomes
dominant (with an interior stationary point), inducing the provider to use AI on only a subset of
patients, thereby making coordination unattainable. This result aligns with recent literature high-
lighting the complexities of designing payment systems in healthcare. Studies suggest that although
altruistic motivations are desirable, they can weaken the influence of incentive structures designed
to improve efficiency and quality outcomes. For instance, Prendergast (2007) argues high intrinsic
motivation may limit the ability of external rewards to influence behavior. Echoing these findings,
Proposition 3 reveals the nuanced role of δ in shaping healthcare efficiency, meaning policies solely
focused on increasing patient-centeredness may overlook the role of financial incentives in shaping
physician behavior.

6. A Hybrid Payment System
We have shown in the preceding section that the quality-based payment system proves ineffective
under high levels of physician altruism. We now shift our focus to a hybrid payment system that



18 Adida and Dai: Provider Payment Models for Generative AI in Healthcare

merges aspects of both fee-for-service and quality-based payment mechanisms. In this system, the
provider is compensated with a per-visit fee of f in addition to the quality-based payment (γq).
Because coordination is achievable using a quality-based payment when δ ≤ 1/2 (see Section 5.2), we
focus in this section on the case of δ > 1/2.

6.1. Coordinating Hybrid Model

Under this hybrid payment model, the provider’s decision-making process in the second stage, given
the quality decision q and price decision p by the developer, is captured by:

max
x1,x2

∫ x2

x1
(f + γq− p)dx+ δbq

∫ x2

x1
xdx= (f + γq− p)(x2 −x1) + δbq

x2
2 −x2

1

2 .

Under a hybrid payment structure combining fee-for-service and quality-based incentives, the devel-
oper’s decision-making differs significantly depending on the extent of market coverage. We examine
two cases: full and partial market coverage, each reflecting distinct economic and operational condi-
tions for optimal quality and pricing decisions.

Case 1: Full Market Coverage. When the developer anticipates full market coverage, it maximizes
utility by selecting quality (q) and price (p) to achieve optimal revenue subject to a minimum fixed
payment (f):

max
p,q>0

−cq2 + p s.t. p− γq ≤ f.

Solving this yields an optimal quality level q = γ/(2c) and a price p = f + γ2/(2c), resulting in an
objective value of f + γ2/(4c).

Case 2: Partial Market Coverage. Under partial market coverage, the developer’s utility depends
not only on fee-for-service payments but also on the quality-sensitive revenue from covered patients.
This scenario’s objective function is:

max
p,q>0

ψ(p, q) = −cq2 + p

(
1 − p− f − γq

δbq

)
,

subject to p− γq > f and p− (γ+ δb)q ≤ f . In this scenario, quality incentives are linked directly to
coverage decisions. The solution yields an optimal quality level q = (δb+ γ)2/(12cδb).

The comparison between full and partial coverage gives rise to the existence of a threshold pay-
ment f̄ above which the provider’s and developer’s incentives are aligned under a hybrid model. A
reimbursement amount above this threshold level guarantees the provider’s financial incentives are
sufficient for full AI usage, whereas the developer commits to a quality level that aligns with first-best
outcomes. The following proposition provides the condition for the quality-based payment scheme to
coordinate the AI developer’s and the provider’s incentives:
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Proposition 4. Suppose δ ≥ 1/2, and let

f̃ =


(δ+ 1

2 )3
b2

12δc
√

3 if δ > 1 +
√

3/2
b2(δ+ 1

2 )2(δ− 1
2 )

12δc
else.

• If f ≥ f̃ , setting γ = b
2 enables the quality-based payment scheme to align decisions with the

first-best outcome.
• f∗ ∈ (0, f̃ ] exists such that coordination is achieved if and only if γ = b

2 and f ≥ f∗.

Proposition 4 first provides a sufficient condition leading to a coordinating payment scheme.
Namely, it obtains a closed-form expression for f̃ , the minimum fixed payment to the provider that
ensures the first-best outcome arises. As long as the payment meets this minimum value, the provider
has sufficient incentives to use AI on all patients, and the quality level the developer selects matches
the first-best as well as long as γ is set adequately.

Proposition 4 also gives a necessary and sufficient condition for coordination, in the form of a proof
of the existence of a threshold f∗ on this fixed payment. Due to a lack of tractability, we do not have
a closed-form expression on this threshold. However, an extensive numerical study, described below,
makes clear that f∗ is well approximated by f̃ , and has the same monotonicity properties.

6.2. Numerical Illustration

To illustrate how the proposed hybrid payment scheme coordinates both upstream and downstream
activities, we use ambient listening solutions in healthcare as a concrete example. These technologies
have the potential to significantly reduce the time physicians spend on electronic health record (EHR)
documentation, enabling greater focus on direct patient care. For instance, first-year internal medicine
residents allocate approximately 87% of their work hours away from patients, with a significant
portion dedicated to EHR tasks (Chaiyachati et al. 2019). Similarly, primary care physicians spend
a median of 5.9 hours daily on EHR activities, including 1.4 hours after clinic hours (Tai-Seale et al.
2019). Ambient listening technologies automate EHR documentation, streamlining workflows and
improving physician efficiency, while increasing patient-facing time (Topol 2019).

To calibrate the parameters used in our analysis, we focus on two key quantities: the scaling factor
for benefit (b) and the cost coefficient (c). The parameter b quantifies the economic value of additional
patient-facing time enabled by ambient listening technologies. The quality of the AI tool (q) is
normalized such that q = 1 represents the maximum achievable reduction in EHR documentation
time, and q = 0 reflects no reduction. Recent findings indicate AI scribes reduce documentation
time for primary care physicians by 13.8%, from 10.9 to 9.4 minutes per appointment (Rotenstein
et al. 2024). Assuming a value of $100 for additional patient-facing time per patient, we estimate
b= $100 × 0.138 = $13.8 per unit of quality level per unit of complexity.
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The parameter c captures the incremental cost of improving the quality of ambient listening sys-
tems, modeled quadratically to reflect diminishing returns. Using average cost data for AI scribe tools
($0.20–$8 per visit, with a midpoint of $4.10; Cohen and Toubiana 2024), we estimate the imputed
unit development cost as $4.1. The cost function is modeled as cq2 = $4.1 at q = 1, so we obtain
c= $4.1.

Table 1 Parameter Values for Sensitivity Analysis

Parameter Base-Case Estimate Sensitivity Range References

Benefit per unit quality level, b ($/unit) 13.80 10–20 Rotenstein et al. (2024)
Cost scaling factor, c ($/unit) 4.10 1–10 Cohen and Toubiana (2024)
Altruism parameter, δ 1.0 0.5–5.0 Adida and Dai (2024)

To conduct some sensitivity analysis when the key coefficients vary around their base-case values,
we consider a wide range of scenarios of parameters as listed in Table 1. Using increments of 0.1, 0.1,
and 0.05 for these parameters results in 810,000 parameter scenarios. In each scenario, we evaluate
the gap between f∗ and f̃ , calculated as (f̃ − f∗)/f̃ . We also test in each scenario the monotonicity
of f∗ with respect to respectively c, b, and δ within the range described above. Our findings are the
following: the maximum gap between f∗ and f̃ across all scenarios equals 7.06%, but the average gap
is much lower, at 0.22% (see Figure 1). In addition, in 93.13% of cases, the gap was smaller than 1%.
This findings confirms f̃ is a very good approximation for f∗. Moreover, we obtained that in 100%
of scenarios, f∗ is monotonically decreasing in c, monotonically increasing in b and monotonically
increasing in δ. Using the closed-form expression of f̃ , it is straightforward to verify f̃ is monotonically
decreasing in c, monotonically increasing in b, and monotonically increasing in δ. Hence, we find
numerically that f∗ has the same monotonicity properties as f̃ .

Remark 1. We observe that the minimum fixed payment increases in δ and b and decreases in c.

An interesting result from the above remark is that the minimum required fee per service to enable
coordination to the first-best decreases as the cost of developing the AI system increases. At first
glance, this finding seems counterintuitive, because one might expect higher development costs to
require higher per-service fees in the coordinating payment model. However, the intuition lies in how
higher costs affect the optimal quality level in the first-best scenario. As development costs increase,
the optimal quality level decreases in the first-best outcome. This reduction in the optimal quality
level simplifies the coordination problem, because the incentives required to motivate the developer
to achieve this reduced quality target are lower. Consequently, the fee per service decreases, even in a
more expensive development environment. This observation reveals the intricate relationship between
development costs, quality targets, and incentives in aligning developer and provider incentives.
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Figure 1 Histogram of the gap between f∗ and f̃ across all scenarios
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7. Extensions
In this section, we explore several extensions to our main model, each addressing specific dimensions
of the problem to test the robustness of our findings and assess the implications of alternative payment
mechanisms. Section 7.1 examines the introduction of a usage cost, capturing operational expenses
incurred by the provider. Section 7.2 analyzes a subscription-based pricing model, contrasting it
with fee-for-service structures. Section 7.3 investigates the impact of provider-facing benefits. Finally,
Section 7.4 evaluates the potential for subsidies to address misalignments between private and social
incentives.

7.1. Usage Cost
We extend our analysis to include a model with a usage cost, representing a fixed cost u incurred by
the provider for each patient treated with the AI system. This cost reflects operational expenses such
as setting up the AI system, inputting and verifying patient-specific information, or managing techni-
cal requirements such as software updates and data integration. These setup and operational efforts
are well-documented as integral to the deployment of AI tools in healthcare settings, particularly for
systems that require customization or preprocessing for effective use.

In the first stage, the AI developer maximizes profit by solving

max
p,q>0

− cq2 + (p+u)(x2 −x1),

where x1 and x2 are determined in the second stage as functions of the price p and quality q. In the
second stage, given p and q, the provider solves:

max
x1,x2

− (p+u)(x2 −x1) + δbq

∫ x2

x1
x, dx.
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The provider uses AI for cases with complexity levels in the range x∈
[

p+u
δbq

,1
]
, provided p+u< δbq.

In the first stage, the developer thus solves:

max
p,q>0

− cq2 + p

(
1 − p+u

δbq

)
s.t. p+u≤ δbq.

The optimal price p satisfies:

(p+u)2

(2p+u)3 = 2c
δ2b2 ,

and the optimal quality is given by:

q = 2p+u

δb
.

This solution ensures the constraints, including the second-order condition q > δb
12c

, are satisfied.
Participation by the developer depends on the profitability of this solution.

Unlike in the main model, introducing a usage cost changes the first-best outcome: full patient
coverage may no longer be socially optimal. The fixed usage cost introduces a threshold complexity
level below which the cost of AI usage outweighs its benefits.

Numerical experiments confirm that in the case in which the provider incurs a usage cost for using
AI, the first-best outcome cannot be achieved under the status quo or a fee-for-service payment model.
The results align with our findings from the main model. These limitations stem from the inherent
misalignment of incentives in such payment structures. Our further numerical analysis shows a hybrid
payment model, which combines fee-for-service with quality-based payments, can overcome these
challenges even in the presence of a usage cost. Specifically, the hybrid model aligns the incentives
of developers and providers, fostering the development and adoption of higher-quality AI systems.
Also, it restores patient coverage to the same level as in the first-best outcome, ensuring equitable
access across the population.

7.2. Subscription-based Pricing

An alternative pricing mechanism is subscription based (Cohen and Toubiana 2024). Under
subscription-based pricing, the developer specifies a subscription fee per time unit and a quality level
q. Upon acceptance of the contract, the provider gains unrestricted access to use AI for an unlim-
ited number of cases without additional charges.4 We denote p as the present value of the expected
time-discounted subscription-fee revenue.

4 Patient panel sizes are typically calculated based on the number of available appointment slots, clinician workdays,
and the average number of patient visits per year, reflecting a capacity-driven approach to panel management (Paige
et al. 2020). As a result, panel size is largely fixed, meaning that under a subscription model, the provider’s decision
focuses on whether to adopt the AI tool rather than selecting specific patients based on complexity.
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In the first stage, the developer solves

max
p,q>0

− cq2 + p.

In the second stage, given the price p and quality q decisions made by the developer, if participating,
the provider solves

max
x1,x2

− p+ δbq

∫ x2

x1
xdx.

If participating, the provider uses AI on all patients (i.e., x1 = 0, x2 = 1). As a result, the provider
participates if and only if p < δbq/2. Hence, in the first stage, the developer sets p= δbq/2 − ϵ and
selects the quality level q to maximize −cq2 + δbq/2. It follows that the developer sets q = δb/(4c)
and its profit is positive; thus, the developer elects to participate. We summarize these results in the
following proposition.

Proposition 5. Under a subscription model, the developer sets the quality level at q = δb/(4c);
the provider participates and uses AI on all patients.

Although a subscription-based payment scheme between the provider and the developer addresses
a separate issue from how the provider is reimbursed by the payer for AI usage, it is worth noting
that such a model achieves coordination to the first-best outcome if and only if δ = 1. For this level
of altruism, both the quality level and the range of patients for whom AI is used are aligned to the
first-best. However, the quality decision is misaligned if δ ̸= 1. A direct subsidy to the provider would
not help address this misalignment. Specifically, a subsidy s granted to the provider would simply
increase the provider’s willingness to pay for the subscription, which would raise the subscription
price by s, but would not change the developer’s quality decision. Essentially, such a fixed subsidy
would be transferred to the developer without enabling coordination of the quality decision to the
first-best.

7.3. Note Time versus “Pajama Time”

In our main analysis, we posit that the benefit from using the AI tool accrues entirely to the patient,
with no direct utility to the provider beyond altruistic considerations. In practice, this assumption
may not hold. For instance, ambient listening tools can provide benefits beyond reducing note time
during patient visits. In addition to improving patient engagement during consultations, they can
reduce “pajama time”—the after-hours documentation burden often borne by providers (Lohr 2023).
Such additional benefits could directly enhance the provider’s utility from adopting the AI tool.

From a modeling perspective, this extension can be accommodated by reinterpreting the altruism
parameter, δ, to reflect both patient-related benefits (e.g., improved engagement) and provider-facing
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efficiencies (e.g., reduced documentation burden). This reinterpretation broadens the scope of δ to
include provider utility derived from the AI tool. This adjustment does not alter our key findings. The
parameter δ continues to serve as a composite measure of the alignment between private and social
benefits in adopting AI tools. Whether the benefits accrue entirely to patients or are shared between
patients and providers, the core trade-offs and policy implications—such as the role of payment
models in incentivizing optimal adoption—remain robust.

7.4. Subsidies

Consider a price subsidy, whereby the provider is subsidized for a proportion of the AI system’s
price. In this framework, the provider would experience an effective price p′ > 0, which is proportional
to the nominal price p. Consequently, in the second stage, the provider’s adoption threshold would
adjust, enabling the use of AI for a greater subset of patients with complexity levels x∈ [p′/(δbq),1].
However, achieving first-best coordination requires AI utilization for all patients. A partial price
subsidy, although expanding usage, cannot eliminate the misalignment between private and social
incentives, thus falling short of the first-best outcome.

Direct subsidies to AI developers are generally not feasible due to practical and political constraints.
For the sake of completeness of analysis, we consider a development-cost subsidy to the AI developer
such that the experienced development cost is c′ > 0, proportional to the initial cost c. In this case,
the subsidy alters the developer’s investment decision. However, as indicated by the equilibrium
outcome, the provider would still use AI for only half of all patients, perpetuating the divergence
from the first-best scenario. Thus, a partial subsidy for development costs, even if it was feasible,
does not achieve coordination.

8. Conclusions
As GenAI becomes increasingly integrated into routine healthcare delivery, the design of appropriate
reimbursement models is important to ensure the development and widespread use of high-quality AI
tools. Current U.S. payment systems do not adequately address the unique financial and operational
needs associated with the adoption of GenAI. Without the right incentives, both AI developers and
healthcare providers may face barriers that prevent the effective use of these advanced tools in clinical
practice.

Our paper presents a novel analytical framework to capture how various reimbursement models
affect the development and use of GenAI in routine healthcare. We show existing U.S. provider
payment models—either offering no reimbursement or relying solely on fee-for-service—are insufficient
for promoting the development of high-quality AI tools and ensuring their optimal use in clinical
practice. Under the status quo of no reimbursement, providers shoulder the full financial burden of
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AI use, leading to limited adoption. This, in turn, results in suboptimal quality from developers,
who lack the incentives to invest in improving their tools. On the other hand, whereas the fee-for-
service model may drive wider AI use, it risks incentivizing the development of lower-quality tools,
particularly when high reimbursement rates diminish the pressure on developers to produce high-
quality AI. Our findings align with predictions from health economics (see, e.g., Zink et al. 2024)
yet introduce a new dimension by examining the upstream effects of AI payment models, thereby
addressing the impact on the quality of AI systems.

To address these shortcomings of the status quo (no reimbursement) and the fee-for-service pay-
ment model, we propose a hybrid payment model that integrates both fee-for-service payments and
quality-based incentives. This approach effectively aligns the interests of AI developers and health-
care providers, promoting the development of high-quality AI systems while ensuring these tools are
used appropriately across diverse patient populations. Crucially, the value component in this model
should be tied to the quality of the AI system itself, rather than solely to the benefit generated by AI.
By focusing on the quality of the AI system, this hybrid system ensures providers are incentivized
to select and implement AI tools that deliver superior clinical performance, regardless of patient
complexity.

One of the more nuanced insights from our analysis is the paradoxical role of physician altruism in
quality-based payment systems. Although greater physician altruism may seem beneficial for patient-
centered care, we find it can undermine the effectiveness of financial incentives. When physicians
are highly motivated by patient welfare, they are less responsive to quality-based financial rewards,
leading to selective AI use and limiting the overall coordination between developers and providers.
As such, payment models must carefully consider the balance between financial incentives and the
intrinsic motivations of healthcare providers to ensure optimal outcomes.

We also highlight a counterintuitive result: higher development costs can actually simplify the
coordination problem, because they lead to lower optimal quality levels in the first-best scenario,
thereby reducing the need for high-powered incentives. This finding challenges conventional wisdom
and underscores the challenges of designing payment systems that balance the trade-offs between
cost, quality, and uptake in healthcare.

Our paper serves as a foundation for future studies on AI reimbursement models, which could
explore other important factors, such as market competition among AI developers, regulatory frame-
works for ensuring safety and efficacy, and the role of bundled or outcome-based payment models in
further optimizing AI adoption. As GenAI continues to evolve and reshape the healthcare landscape,
thoughtful payment system design will be critical to unlocking the full potential of these technologies
for improving clinical outcomes and reducing healthcare costs.
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Online Appendix to “Physician Compensation in the Age of
Generative Artificial Intelligence”

Proof of Lemma 1. At the first-best, the social planner decides which patients [x1, x2] to use AI on (where
0 ≤ x1 ≤ x2 ≤ 1), to maximize

bq
x2

2 −x2
1

2 ,

hence it is clear that it is socially optimal to use AI on all patients. The socially optimal quality is obtained
by solving

max
q>0

− cq2 + bq

2 ,

which leads to q= b/(4c). The social planner’s objective then equals

− b2

16c + b2

8c = b2

16c > 0,

so the social planner opts to participate. Q.E.D.

Proof of Lemma 2. In stage 2, the provider decides which patients [x1, x2] to use AI on (where 0 ≤ x1 ≤

x2 ≤ 1), to maximize

f(x1, x2) = −p(x2 −x1) + δbq
x2

2 −x2
1

2 ,

where ∂f

∂x1
(x1, x2) = p− δbqx1

∂f

∂x2
(x1, x2) = −p+ δbqx2.

If p > δbq, then ∂f
∂x1

> 0 and ∂f
∂x2

< 0 for all x1, x2 ∈ [0,1], so x∗
1 = x∗

2. No patient receives AI.
Otherwise, if p≤ δbq, we have ∂f

∂x1
> 0 if and only if x1 <

p
δbq

and ∂f
∂x2

> 0 if and only if x2 >
p

δbq
. Hence,

f is unimodal in x1 and reaches its maximum at p
δbq

. Moreover, for x2 ≥ p
δbq

, f is increasing in x2, so the
optimal solution is (x1, x2) = ( p

δbq
,1). Q.E.D.

Proof of Proposition 1. If p > δbq, AI is not used in stage 2, so the developer does not participate as
there is no possibility of earning any revenue. In stage 1, the developer solves the following problem (and
participates if and only if the optimal objective value is positive):

max
p,q>0

φ(p, q) = −cq2 + p

(
1 − p

δbq

)
= −cq2 + p− p2

δbq

s.t. p≤ δbq.

We have

∂φ

∂p
(p, q) = 1 − 2p

δbq

∂φ

∂q
(p, q) = −2cq+ p2

δbq2

∂2φ

∂p2 (p, q) = − 2
δbq

< 0
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∂2φ

∂q2 (p, q) = −2c− 2 p2

δbq3 < 0

∂2φ

∂p∂q
(p, q) = 2p

δbq2 .

The first-order conditions can be written as:

2p= δbq

2cδbq3 = p2,

that is,

q= δb

8c , p= δ2b2

16c .

Note in particular that, at this stationary point solution, the constraint p≤ δbq is valid.
The second-order condition requires that, at the stationary point,

2
δbq

(
2c+ 2 p2

δbq3

)
− 4p2

δ2b2q4 > 0,

⇔ 32c2

δ2b2 > 0 after simplifications.

Hence, the unique stationary point is the optimal solution. Moreover, at this solution, the objective value
equals δ2b2/(64c)> 0, so the developer opts to participate. Q.E.D.

Proof of Lemma 3. The proof is similar to the proof of Lemma 2. If p− f > δbq (i.e., if f < p− δbq), AI
is not used on any patient. Otherwise, if f ≥ p− δbq, the optimal solution is (x1, x2) = ( p−f

δbq
,1). Q.E.D.

Proof of Proposition 2. We start with proving the following lemma:

Lemma A1. The inequality

φ

(
δb+

√
(δb)2 − 24cf
12c , f

)
≤ 0

is equivalent to the condition
δ2b2

27c ≤ f ≤ δ2b2

24c .

Proof of Lemma A1. To establish this equivalence, observe that f ≤ δ2b2/24c is required for the square
root to exist, and

φ

(
δb+

√
(δb)2 − 24cf
12c , f

)
= f2 + b4δ4 + bδ (b2δ2 − 24cf)3/2 − 36b2cδ2f

216c2 . (A1)

This expression equals zero when f = δ2b2/(27c). Next, we examine the total derivative of (A1) with respect
to f :

d

df
φ

(
δb+

√
(δb)2 − 24cf
12c , f

)
= 2

f −
bδ
(
δb+

√
(δb)2 − 24cf

)
12c

 . (A2)

This derivative is always negative because

bδ
(
δb+

√
(δb)2 − 24cf

)
12c >

(δb)2

12c ≥ 2f > f.
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Because the derivative is negative and φ equals zero at f = δ2b2/(27c), it follows that

φ

(
δb+

√
(δb)2 − 24cf
12c , f

)
≤ 0 (A3)

if and only if
δ2b2

27c ≤ f ≤ δ2b2

24c . (A4)

Q.E.D.
To prove Proposition 2, we need to solve two optimization problems, and select the one leading to the

higher objective value (provided it is positive, to ensure participation). The first optimization problem is

max
p,q>0

− cq2 + p

s.t. p≤ f.

The optimal solution is q= ϵ and p= f , with an objective value of f − cϵ2 ≈ f .
The second optimization problem is

max
p,q>0

ψ(p, q) = −cq2 + p

(
1 − p− f

δbq

)
s.t. p > f

p− δbq≤ f.

We have
∂ψ

∂p
(p, q) = 1 − 2p− f

δbq

∂ψ

∂q
(p, q) = −2cq+ p(p− f)

δbq2 .

The first-order conditions can be written as:

2p− f = δbq

2cδbq3 = p(p− f).

The former implies p− δbq = f − p≤ f , consistent with the second constraint of the optimization problem.
The latter implies in particular p− f > 0, consistent with the first constraint of the optimization problem.
Hence, at a stationary point, both constraints are satisfied.

We have
∂2ψ

∂p2 (p, q) = − 2
δbq

< 0

∂2ψ

∂q2 (p, q) = −2c− 2p(p− f)
δbq3 < 0

∂2ψ

∂p∂q
(p, q) = 2p− f

δbq2 ,

where the first two inequalities are trivially satisfied at a stationary point. The second-order conditions also
require that, at a stationary point,

2
δbq

(
2c+ 2p(p− f)

δbq3

)
−
(

2p− f

δbq2

)2

> 0.
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Using the first-order condition, the above inequality simplifies to 12c/(δbq) − 1/q2 > 0, or equivalently, q >
δb/(12c).

Plugging the first first-order condition into the second, we obtain

δ2b2q2 − f2

4 = 2δbcq3,

or equivalently
φ(q, f) ≡ 8δbcq3 − δ2b2q2 + f2 = 0.

We need to solve this equation for q to find the quality at a stationary point for a given f . We have

∂φ(q, f)
∂q

= 24δbcq2 − 2δ2b2q= 2qδb(12cq− δb).

Hence, φ(q, f) is unimodal in q, reaching a minimum when q= δb/(12c). At that minimum, φ(q, f) takes the
value (after simplifications)

φ

(
δb

12c , f
)

= f2 − δ4b4

3 × 122c2 .

Therefore, the equation φ(q, f) = 0 in q has two solutions q̄1, q̄2 if and only if f < δ2b2/(12c
√

3). (If f =
δ2b2/(12c

√
3), there is a single solution q= δb/(12c) and φ(q, f) ≥ 0 for all q, and if f is above the threshold,

there is no solution.) In addition, because φ(0, f)> 0, both solutions q̄1, q̄2 are non-negative; they are equidis-
tant to δb/(12c). It follows that a unique stationary point q̄2 exists satisfying the second-order conditions if
and only if f < δ2b2/(12c

√
3). Moreover, we have δb/(12c)< q̄2 < δb/(6c).

It remains to ensure that at this solution (together with the associated price, p̄2 ≡ (δbq̄2 + f)/2), the
objective value is larger than that at the first optimization problem. Namely, we need to ensure that, at this
stationary point,

− cq2 + p

(
1 − p− f

δbq

)
= −3cq2 + δbq

2 + f

2 > f,

⇔ − 3cq2 + δbq

2 − f

2 > 0.

This degree-2 polynomial is less than or equal to zero if (δb)2 ≤ 24cf . Otherwise, it has two positive roots that
are equidistant to δb/(12c). Hence, the objective value is larger than that at the first optimization problem
if and only if the stationary point is located in between these two roots, that is, if and only if

q̄2 ≤
δb+

√
(δb)2 − 24cf
12c ,

or equivalently, if and only if

φ

(
δb+

√
(δb)2 − 24cf
12c , f

)
> 0.

Using Lemma A2, this inequality is equivalent to

δ2b2

27c ≤ f ≤ δ2b2

24c . (A5)

Conclusion:
• if f > δ2b2/(12c

√
3), no stationary point exists in the second optimization problem. At the bound-

aries/limit, the objective is the same or worse than the first optimization problem;
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• else, if f ≥ δ2b2/(24c), the second optimization problem has a worse objective than the first;

• else, if f ≥ δ2b2/27c, the second optimization problem has a worse objective than the first.

• else, that is, if f < δ2b2/(27c), one stationary point exists that is the unique maximizer, given by q̄2 as
the larger root in q of φ(q, f), and associated price p̄2 ≡ (δbq̄2 + f)/2.

Q.E.D.

Proof of Corollary 1. We start with proving the following lemma:

Lemma A2. The inequality

φ

(
δb+

√
(δb)2 + 48cf
24c , f

)
≤ 0

is equivalent to the condition

δ2b2

27c ≥ f.

Proof of Lemma A2. We start by noting

φ

(
δb+

√
δ2b2 + 48cf
24c , f

)
= bδf

√
b2δ2 + 48cf
36c −

b3δ3 (√b2δ2 + 48cf + bδ
)

864c2 + f2,

which is equal to zero when f = b2δ2

27c
. The total derivative of the above quantity with respect to f is given

by

2f
(

bδ√
b2δ2 + 48cf

+ 1
)
> 0.

Therefore, it follows that

φ

(
δb+

√
δ2b2 + 48cf
24c , f

)
< 0

if and only if f < b2δ2

27c
. Q.E.D.

To prove Corollary 1(i), note φ(q∗, f) = 0 implies

∂φ

∂q

dq∗

df
+ ∂φ

∂f
= 0. (A6)

Because ∂φ/∂f = 2f > 0, it follows that

∂φ

∂q

dq∗

df
< 0.

Moreover, since ∂φ/∂q > 0 when q ∈ [δb/(12c),∞), it follows that dq∗/df < 0.
To prove Corollary 1(ii), note

dp∗

df
= 1

2δb
dq∗

df
+ 1

2 .

Moreover, from (A6),

dq∗

df
= −∂φ/∂f

∂φ/∂q
= − 2f

2δbq∗(12cq∗ − δb) .
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As a result,

dp∗

df
= −2fδb+ 2δbq∗(12cq∗ − δb)

4δbq∗(12cq∗ − δb) ,

which has the sign of 12c(q∗)2 −δbq∗ −f . This degree-2 polynomial in q∗ has a positive discriminant, a positive
root, and a negative root; moreover it gros to infinity as q∗ grows large. Hence, on the positive domain,
the polynomial is positive if and only if q∗ is above the positive root, namely, (δb+

√
(δb)2 + 48cf)/(24c).

Because φ is increasing in q for q > δb/(12c), it follows that dp∗/df ≥ 0 if and only if

φ

(
δb+

√
δ2b2 + 48cf
24c , f

)
≤ 0.

By Lemma A2, we have dp∗/df ≥ 0 if and only if δ2b2/27c ≥ f . By part (ii) of Proposition 2, we have
f < δ2b2/27c. As a result, dp∗/df ≥ 0. Q.E.D.

Proof of Corollary 2. As noted in the proof of Proposition 2, the quality set with a fee-for-service
reimbursement is either q= ϵ (near zero) with AI used on all patients, or q= q̄2, where δb/(12c)< q̄2 < δb/(6c)
with AI used on a subset of patients. Because at the first-best, AI is used on all patients with a non-near-zero
quality, matching the first-best is impossible.

Furthermore, δb/(6c)< b/(4c) when δ < 1.5. Hence, the quality is lower than that at the first-best, given
by b/(4c). Q.E.D.

Proof of Lemma 4. Coordination would require that the second case of Proposition 2 holds and

1
2 − f

2δbq̄2
= 0,

that is, f = δbq̄2. Moreover, φ(q̄2, f) = 0 implies

8δbcq̄3
2 − δ2b2q̄2

2 + δ2b2q̄2
2 = 0,

that is, δbcq̄3
2 = 0 which contradicts δ > 0 and q̄2 > δb/(12c). Q.E.D.

Proof of Proposition 3. We need to solve two optimization problems, and select the one leading to the
higher objective value (provided it is positive, to ensure participation). The first optimization problem is

max
p,q>0

− cq2 + p

s.t. p− γq≤ 0.

The optimal solution is q= γ/(2c) and p= γ2/(2c), with an objective value of γ2/(4c). With these decisions,
AI is used on all patients, so this coordinates to the first-best if and only if the quality decisions match, that
is, γ = b/2.

The second optimization problem is

max
p,q>0

ψ(p, q) = −cq2 + p

(
1 − p− γq

δbq

)
s.t. p− γq > 0

p− (γ+ δb)q≤ 0.
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If this problem dominates the first, AI is used for only a fraction of patients, making coordination impossible,
regardless of γ. Hence, to focus on whether coordination is possible, we set γ = b/2 and we seek to determine
whether the optimal objective value of the second optimization problem may dominate that of the first.

We have

∂ψ

∂p
(p, q) = 1 − 2p− γq

δbq
= 1 − 2p

δbq
+ γ

δb

∂ψ

∂q
(p, q) = −2cq+ p2

δbq2 .

The first-order conditions can be written as:

p= δb+ γ

2 q

2cδbq3 = p2.

Plugging the first condition into the second, we obtain p= q= 0 (leading to an objective value of zero, worse
than the first problem) or

q= (δb+ γ)2

8cδb , p= (δb+ γ)3

16cδb .

Regarding the constraints, we have (using γ = b/2)

p− γq= (δb− γ)q/2 = b(δ− 1/2)q/2> 0 if and only if δ > 1/2

p− (γ+ δb)q= −p≤ 0.

Hence, if δ > 1/2, the stationary point satisfies the constraints; otherwise, no stationary point (other than
(0,0)) exists in the feasible domain, so the first constraint is tight at the optimum (p= γq), and the problem
reduces to the first optimization problem. We thus focus on the case δ > 1/2 in the remainder of the proof.

We have

∂2ψ

∂p2 (p, q) = − 2
δbq

< 0

∂2ψ

∂q2 (p, q) = −2c− 2 p2

δbq3 < 0

∂2ψ

∂p∂q
(p, q) = 2p

δbq2 .

The second-order conditions require that, at a stationary point,

2
δbq

(
2c+ 2 p2

δbq3

)
−
(

2p
δbq2

)2

> 0.

Using the first-order condition, the above inequality simplifies to 4c/(δbq) > 0, which is trivially satisfied.
Hence, the stationary point is the optimal solution.

It remains to compare the objective of the second optimization problem at the optimal solution with that
of the first one. After simplifications, the objective of the second problem at the unique stationary point is

(γ+ δb)4/(64cδ2b2),
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which is larger than the objective of the first problem (γ2/(4c)) because
(γ+ δb)4

64cδ2b2 ≥ γ2

4c ⇔ (γ+ δb)2 ≥ 4δbγ

⇔ (γ− δb)2 ≥ 0.

Hence, coordination is possible if δ < 1/2; otherwise, the second optimization problem dominates. Q.E.D.

Proof of Proposition 4. We need to solve two optimization problems, and select the one leading to the
higher objective value (provided it is positive, to ensure participation). The first optimization problem is

max
p,q>0

− cq2 + p

s.t. p− γq≤ f.

The optimal solution is q = γ/(2c) and p= f + γ2/(2c), with an objective value of f + γ2/(4c). With these
decisions, AI is used on all patients so this coordinates to the first-best if and only if the quality decisions
match, that is, γ = b/2.

The second optimization problem is

max
p,q>0

ψ(p, q) = −cq2 + p

(
1 − p− f − γq

δbq

)
s.t. p− γq > f

p− (γ+ δb)q≤ f.

If the second optimization problem yields a higher objective value than the first, AI is used only for a subset
of patients, making coordination unattainable irrespective of the value of γ. To obtain the conditions under
which coordination is feasible, we fix γ = b/2 and evaluate whether the optimal objective value of the second
optimization problem can exceed that of the first.

We have
∂ψ

∂p
(p, q) = 1 − 2p− f − γq

δbq
= 1 − 2p− f

δbq
+ γ

δb

∂ψ

∂q
(p, q) = −2cq+ p(p− f)

δbq2 .

The first-order conditions can be written as:

2p− f = (δb+ γ)q

2cδbq3 = p(p− f).

The former implies p − (δb + γ)q = f − p ≤ f , consistent with the second constraint of the optimization
problem. The first constraint of the optimization problem is p− γq > f , i.e., using the first of the FOC,
q > f/(δb−γ). This requires δb > γ, which is valid when γ = b/2 and δ > 1/2. We still need to check whether
this constraint is satisfied at a stationary point. (If not, the constraint is tight, and the second problem
reduces to the first optimization problem.)

We have
∂2ψ

∂p2 (p, q) = − 2
δbq

< 0
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∂2ψ

∂q2 (p, q) = −2c− 2p(p− f)
δbq3 < 0

∂2ψ

∂p∂q
(p, q) = 2p− f

δbq2 ,

where the first two inequalities are trivially satisfied at a stationary point. The second-order conditions also
require that, at a stationary point,

2
δbq

(
2c+ 2p(p− f)

δbq3

)
−
(

2p− f

δbq2

)2

> 0.

Using the first-order condition, the above inequality simplifies to 12cδbq > (δb+ γ)2 or, equivalently, q >
(δb+ γ)2/(12cδb).

Plugging the first first-order condition into the second, we obtain

(δb+ γ)2q2 − f2

4 = 2δbcq3

or, equivalently,
φ(q) ≡ 8δbcq3 − (δb+ γ)2q2 + f2 = 0.

We need to solve this equation for q to find the quality at a stationary point. We have

φ′(q) = 24δbcq2 − 2(δb+ γ)2q= 2q(12δbcq− (δb+ γ)2).

Hence, φ(q) is unimodal, reaching a minimum when q= (δb+γ)2/(12δbc). At that minimum, φ(q) takes the
value (after simplifications)

φ

(
(δb+ γ)2

12δbc

)
= f2 − (δb+ γ)6

3 × (12δbc)2 .

Therefore, the equation φ(q) = 0 has two solutions q̄1, q̄2 if and only if f < (δb+γ)3/(12δbc
√

3) = f̄ (using the
fact that γ = b/2). (If f = (δb+ γ)3/(12δbc

√
3), there is a single solution q = (δb+ γ)2/(12δbc) and φ(q) ≥ 0

for all q, and if f is above the threshold, there is no solution.) In addition, because φ(0)> 0, both solutions
q̄1, q̄2 are non-negative; they are equidistant to (δb+ γ)2/(12δbc). It follows that a unique stationary point
q̄2 exists satisfying the second-order conditions if and only if f < (δb+ γ)3/(12δbc

√
3). Moreover, we have

(δb+ γ)2/(12δbc)< q̄2 < (δb+ γ)2/(6δbc).
Because the first-order condition gives p= ((δb+γ)q+f)

2 , and because γ = b/2 with δ > 1/2, the stationary
point satisfies the first constraint p− γq > f if and only if q > f

δb−γ
. This condition holds if and only if one

of the following is true:
φ

(
f

δb− γ

)
< 0 or q̄1 >

f

δb− γ
.

Simplifying further, we find that φ
(

f
δb−γ

)
has the same sign as the expression 2cf − γ(δb− γ). Thus, the

constraint is satisfied if either 2cf −γ(δb−γ)< 0 or both 2cf −γ(δb−γ)> 0 and f
δb−γ

< (δb+γ)2

12δbc
. Specifically,

this implies either:
f <

γ(δb− γ)
2c or γ(δb− γ)

2c < f <
(δb+ γ)2(δb− γ)

12δbc .

Therefore, the stationary point satisfies the first constraint if and only if:

f <
(δb+ γ)2(δb− γ)

12δbc =
b2(δ+ 1

2 )2(δ− 1
2 )

12δc .
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If f exceeds this threshold, the stationary point becomes infeasible, leaving the second optimization problem
with no interior solution. Observe

b2(δ+ 1
2 )2(δ− 1

2 )
12δc < f̄ ⇔

√
3(δ− 1

2)< δ+ 1
2

⇔ δ < 1 +
√

3
2 ≈ 1.87.

Provided that the stationary point is feasible, it remains to compare the objective value at this solution
(together with the associated price, p̄2 ≡ ((δb+ γ)q̄2 + f)/2) verus that at the first optimization problem.
Namely, the first optimization problem dominates when, at this stationary point,

− cq2 + p

(
1 − p− f − γq

δbq

)
= −3cq2 +

(
(δb+ γ)q

2 + f

2

)(
1 + γ

δb

)
< f + γ2

4c ,

⇔ − 3cq2 + (δb+ γ)2

2δb q− f

2 + fγ

2δb − γ2

4c < 0.

If the optimal solution to the second optimization problem lies on one of the boundaries, two possibilities
exist: either the first or the second constraint is tight. If the first constraint in tight, the problem reduces to
the first optimization problem. If the second constraint is tight, the optimal solution is q = 0, p= f with an
objective value of zero, which is worse than the first optimization problem.

Hence,
• if δ > 1 +

√
3/2 and f > b2(δ+ 1/2)3/(12δc

√
3), or if δ < 1 +

√
3/2 and f > b2(δ+ 1/2)2(δ− 1/2)/(12δc),

no feasible stationary point exists in the second optimization problem. The solution is that of the first
optimization problem. Hence, setting γ = b/2 coordinates to the first-best;

• otherwise, a feasible stationary point (solution of the second optimization problem) exists. We need to
find it and test whether the resulting objective is worse than the objective of the first problem. We first
need to find q̄2 the larger root of the equation

φ(q) ≡ 8δbcq3 − (δb+ γ)2q2 + f2 = 0.

Set p̄2 ≡ ((δb+ γ)q̄2 + f)/2. Then, we test whether

−3cq2 + (δb+ γ)2

2δb q− f

2 + fγ

2δb − γ2

4c < 0. (A7)

If so, setting γ = b/2 coordinates to the first-best. If not, the second optimization problem dominates
the first, and no coordination is possible, because only a fraction of patients receives AI at the optimal
solution.

Taking the derivative with respect to f of the equation φ(q) = 0, we obtain
∂q̄2

∂f
= f

q̄2

1
(δb+ γ)2 − 12δbcq̄2

.

Because we have q̄2 >
(δb+γ)2

12δbc
, it follows that ∂q̄2

∂f
< 0. Furthermore, by taking the partial derivative of the

left-hand side of (A7) with respect to f and using the expression for ∂q̄2
∂f

, we obtain:
f − (δb− γ)q̄2

2δbq̄2
< 0,

where the inequality holds due to the first feasibility constraint. As a result, (A7) is equivalent to requiring
f to exceed a certain threshold. Given that coordination is possible for f above f̃ and impossible for f = 0,
it follows that the threshold f∗ lies within the interval (0, f̃ ]. Q.E.D.
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