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Abstract. A firm hires an agent (e.g., a store manager) to undertake both operational and
marketing tasks. Marketing tasks boost demand, but for demand to translate into sales,
operational effort is required to maintain adequate inventory. The firm designs a compen-
sation plan to induce the agent to put effort into both marketing and operations while facing
demand censoring (i.e., demand in excess of available inventory is unobservable).We formulate
this incentive-design problem in a principal-agent framework with a multitasking agent
subject to a censored signal. We develop a bang-bang optimal control approach, with a
general optimality structure applicable to a broad class of incentive-design problems. Using
this approach, we characterize the optimal compensation plan, with a bonus region
resembling a “mast” and “sail” such that a bonus is paid when either all inventory above a
threshold is sold or the sales quantitymeets an inventory-dependent target. The optimalmast-
and-sail compensation plan implies nonmonotonicity, where the agent can be less likely to
receive a bonus for achieving a better outcome. This gives rise to an ex postmoral hazard issue
where the agent may “hide” inventory to earn a bonus. We show that this ex post moral
hazard issue is a result of demand censoring. If available information includes a waiting list
(or other noisy signals) to gauge unsatisfied demand, no ex post moral hazard issues remain.
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1. Introduction
The impetus for studying the interface of operations
and marketing is the contention that each function
cannot be managed without careful consideration of
the other (Shapiro 1977, Ho and Tang 2004). This
reality is acutely apparent in retail settings, where a
store manager oversees both operational and mar-
keting tasks. A search on the online employment plat-
formMonster.com returns over 8,500 retail storeman-
ager job listings with “multitasking” as a core skill.
Echoing this requirement, DeHoratius and Raman
(2007, p. 523) contend that the store manager is a
“multitasking agent who allocates effort to different
activities based on the rewards that accrue from, and
the cost of pursuing, each of these activities” (em-
phasis added). Stated differently, the multitasking
store manager must allocate effort across both func-
tions, and the effectiveness of this “balance of effort”
is critical to the success of the store.

We focus on two activities of a store manager:
(1) marketing (i.e., bolstering customer demand) and
(2) operations (i.e., ensuring that inventory can be put
in the hands of customers, where it belongs, instead
of beingmisplaced, damaged, spoiled, or stolen through
mismanagement).1 In light of these two competing

areas of focus, how does one design compensation
plans to get the most out of one’s store managers?
Such a question is a critical concern for those running
decentralized retail chains. The challenge of com-
pensation design for retail store managers is the
subject of business school case studies (Krishnan and
Fisher 2005) and empirical research (DeHoratius and
Raman 2007).
The vast majority of compensation models con-

siders single-tasking agents, most prominently in the
salesforce compensation literature (see Section 2 for
more details). When it comes to multitasking agents,
the research typically restricts attention to linear
contracts in settings where the outcomes of each task
are perfectly observable. The former belies an interest in
nonoptimal contracts (the optimality of linear con-
tracts is only established in very restrictive settings),
whereas the latter is unsuitable for our setting.
To translate demand generated through marketing
effort into sales requires sufficient inventory, an out-
come of operational effort. When inventory is insuf-
ficient, unmet demand is lost and unobservable, a
phenomenon known as demand censoring. Accord-
ingly, the outcomes of the associated tasks in our
setting lack observability.
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Demand censoring is widely seen in practice and is
well studied in economics (e.g., Conlon andMortimer
2013), marketing (e.g., Anupindi et al. 1998), and op-
erations management (e.g., Besbes and Muharremoglu
2013). Its negative implications for sales performance
are well known, largely because censoring compli-
cates the forecasting of demand and the planning of
inventory. However, the effect of demand censoring
on contract design has not been studied in the mul-
titasking setting.

A major takeaway of this paper is that demand
censoring—a defining feature of the interplay be-
tween operations and marketing—has inherent and
perplexing implications for compensation design.
We come to this conclusion as follows. Practically
implementable compensation plans typically have
simple structures. Two prime examples are quota-
bonus contracts and linear commission contracts in
salesforce compensation. A pivotal property of these
contracts, in addition to being easily understood
by salespeople, is that they are monotone, meaning
that an increase in sales weakly increases compen-
sation. It would strike a salesperson as strange if
an additional sale reduced his or her compensation.
However, establishing the monotonicity of optimal
contracts proves difficult.

In single-tasking salesforce compensation, re-
searchers have examined the optimality of quota-
bonus and linear commission contracts. Rogerson
(1985), for example, showsmonotonicity using the so-
called first-order approach. This approach—a stan-
dard procedure used in deriving the optimal com-
pensation plan in moral hazard problems—is not
without controversy. Laffont and Martimort (2009,
p. 200) state that “the first-order approach has been
one of themost debated issues in contract theory” and
that “when the first-order approach is not valid, using
it can be very misleading.” In particular, the convex
distribution function condition (CDFC), often as-
sumed in the moral hazard principal-agent literature
to support the first-order approach, is satisfied by
essentially no familiar distributions. (Recent work by
Ke and Ryan (2018a, b) attempts to establish the mono-
tonicity of the optimal contract without using the first-
order approach.) The validity of the first-order approach
is particularly troubling in a multitasking setting, with
a multidimensional effort and a multidimensional out-
put signal.2

To overcome these technical challenges, we de-
velop a “bang-bang” optimal control approach that
applies to a broad class of incentive-design problems
that significantly relaxes conditions needed to es-
tablish optimality. This approach allows for most of
the commonly used families of distributions on both
the operational and marketing sides. Using this ap-
proach, we characterize the optimal compensation

plan for a multitasking agent subject to a censored
signal. The optimal compensation plan we derive is
analogous to the quota-bonus contracts of the sales-
force literature, except now a bonus region for sales
and inventory realizations exists: if sales and inven-
tory realize in this region, a bonus is granted; oth-
erwise, the store manager gets only his or her salary.
Concretely, we find an optimal compensation plan for
the multitasking store manager under the mono-
tone likelihood-ratio property (MLRP), which is com-
monly assumed in the principal-agent literature (see
Laffont and Martimort 2009, pp. 164–165), that con-
sists of a base salary and a bonus paid to the store
manager when either (1) inventory does not clear and
the sales quantity exceeds an inventory-dependent
threshold or (2) inventory clears and the realized
inventory level exceeds a threshold.
Intriguingly, the structure of such a bonus region,

which resembles a “mast” and “sail” (see Figure 2(a)),
gives rise to inherent nonmonotonicity of the optimal
compensation plan—given the same sales outcome,
scenarios exist in which the store manager receives
the bonus at some inventory level but no longer so at a
higher inventory level. In other words, ceteris paribus,
the store manager seems to be penalized for better in-
ventory performance. This nonintuitive result can be
understood as follows. When inventory is cleared, the
realized demand is unobservable and capped by the
inventory level. The firm’s observed sales quantity is a
lower bound on realized demand. Given the same sales
quantity, as inventory increases, the salesmanager no
longer clears the inventory. The observed sales quantity
is equal to (as opposed to a lower bound of) realized
demand. Increased inventory is informative of the
storemanager not exerting highmarketing effort. This
informational reasoning justifies a loss of the bonus.
Our derivation of the optimal compensation plan

restricts attention to ex ante moral hazard (i.e., the
agent’s effort after entering into the compensation
plan is not observable). This focus is standard in the
literature—the vast majority of the moral hazard
literature ignores any ex post moral hazard (i.e., after
exerting effort, the agent does not manipulate the
realized outcome). A nonmonotone optimal com-
pensation plan evokes the speculation that, in certain
cases, a store manager may “hide” inventory to
represent a stockout to the firm, thereby hiding a
potential deficiency in marketing effort. In other
words, in the presence of the additional consideration
of ex post moral hazard, demand censoring further
confounds operations-marketing multitasking.
Of course, the incentive to hide inventory could be

monitored by the company. However, the need for
such careful monitoring runs against the principle
of effective incentive design: if incentives are ap-
propriately designed, employees have the “right”
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incentives to manage their own behavior. If moni-
toring can capture the overstating of inventory losses
(i.e., ex post moral hazard), can we not also monitor
operational and marketing effort (i.e., ex ante moral
hazard)? This reveals an agency conundrum: because of
the firm’s inability to monitor customer intentions
(i.e., not observing all of demand because of inventory
shortfalls), it is unable to design intuitive compen-
sation schemes that preclude the need for the moni-
toring of employee intentions, either their conscien-
tiousness in sales and operational activities or their
honesty in representing the level of inventory in the
store. This conundrumhas important implications for
incentive design in the retail setting.

We believe that this agency conundrum (the result
of demand censoring and nonmonotone contracts) is
at the core of multitasking with censored signals.
Further analysis and numerical investigations show
that several intuitive monotone compensation plans
fail to be optimal. A natural first idea, given the two
output signals (demand and inventory), is to give the
store manager a bonus if each signal meets somemin-
imum threshold. We call such compensation plans
corner compensation plans because the two thresh-
olds form a corner in the outcome space. The logic of
corner compensation plans finds its trace in practice
(e.g., Krishnan and Fisher 2005, DeHoratius and
Raman 2007) and is in line with known results in
the single-tasking contract theory literature (e.g.,
Oyer 2000). Nonetheless, we show that such plans
cannot be optimal and furthermore exhibit natural
cases where they perform arbitrarily poorly. Other
simple (and monotone) compensation plans, such as
linear compensation, do not fare any better in our
numerical experiments.

Our resolution of the agency conundrum is also
telling. The trap of both ex ante and ex post moral
hazard is not overcome by further monitoring of
employees but instead by improved monitoring of
customer intentions, even to a modest degree. If the
firm can noisily gauge unsatisfied demand, for ex-
ample, through a waiting list where an unknown but
nonzero proportion of unsatisfied demand is recor-
ded, an optimal compensation plan can be constru-
cted to handle both ex ante and ex post moral hazard
issues. Remarkably, going from complete demand
censoring to partial demand censoring greatly alle-
viates the challenge of managing inventory, here
indirectly through incentive design.

Taken together, our results allude to a novel con-
nection between customer intention and employee
effort. The visibility of customer behavior (i.e., cus-
tomer demand) and the visibility of employees’ be-
havior (i.e., their effort) are linked through employee
compensation. Monitoring employee behavior in
order to improve employee effort is unnecessary;

improved monitoring of customers can suffice. This
interplay between customer behavior and opera-
tional planning goes to the very heart of what
makes the operations-marketing interface com-
pelling to study.

2. Related Literature
The retail operations literature has empirically docu-
mented the importance of incentive design for store
managers. DeHoratius and Raman (2007) empirically
study store managers as multitasking agents who
function as both an inventory-shrinkage controller
and a salesperson. DeHoratius and Raman (2007)
substantiate the view that store managers make their
effort decisions across both job functions in response to
incentives. Krishnan and Fisher (2005) provide a pro-
cess view of the range of a retail manager’s respon-
sibilities and detail the impact of incentive design on
operational and marketing efforts, counting spoilage
and shrinkage control as crucial areas of managerial
control. To the best of our knowledge, our paper is the
first analytical treatment of optimal incentive design
for amultitasking storemanager. Accordingly,we are
the first to provide an optimal benchmark to assess
losses due to demand censoring and multitasking.
Our findings shed light on the nature of the relation-
ship between marketing and operations, an issue that
has inspired a voluminous literature (e.g., Shapiro
1977; Ho and Tang 2004; Jerath et al. 2007, 2017).
Salesforce compensation has been studied in the

economics, marketing, and operations management
literature (see, e.g., Lal and Srinivasan 1993, Raju and
Srinivasan 1996, Oyer 2000, Misra et al. 2004, Herweg
et al. 2010, Jain 2012, Jain et al. 2019, Chen et al. 2020,
Long andNasiry 2020).Much of this literature focuses
on two types of contracts, linear commission and
quota bonus (i.e., the salesperson receives a bonus
for meeting a sales quota). The optimality of linear
commission contracts has various caveats—its primary
justification assumes a normally distributed outcome
and a constant absolute risk-aversion (CARA) agent
utility. By contrast, the optimality of quota-bonus
contracts has followed from less restrictive condi-
tions, namely risk neutrality, limited liability, and a
general outcome distribution. (Limited liability cap-
tures an agent’s aversion to downside risk and can
be viewed as a type of risk aversion.) We follow the
latter tradition and derive optimal contracts in a spirit
similar to quota-bonus contracts, although with im-
portant differences.
The salesforce compensation literature had, until

recently, assumed that unlimited inventory meets
the demand generated by the salesperson. A recent
stream of literature (Chu and Lai 2013; Dai and Jerath
2013, 2016, 2019) incorporates demand censoring be-
cause of limited inventory into the single-taskingmodel.
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We study the compensation of a store manager who
undertakes operational effort to increase the realized
inventory level, in addition to marketing effort to
influence demand. As a result, our optimal compen-
sation plan exhibits a structure that does not im-
mediately generalize the well-studied quota-bonus
contract from the single-tasking setting. Indeed, we
show several “intuitive” generalizations, including
that corner compensation plans are not optimal and
can perform poorly relative to the optimal compen-
sation plan.

Our paper also relates to the accounting and eco-
nomics literature (e.g., Holmstrom and Milgrom 1991,
Feltham and Xie 1994, Dewatripont et al. 1999) on
multitasking. The seminal work here is Holmstrom
and Milgrom’s (1991) model of a multitasking agent
whose job consists of multiple concurrent activities
that jointly produce a multidimensional output. They
focus on a linear compensation scheme and show that
varying the weights of the compensation plan elicits
changes in the agent’s effort allocation. Our work
departs from this setting in several ways. First, our
multidimensional output affects the principal’s utility
in a nonlinear fashion. Second, our paper derives the
optimal compensation plan, whereas the literature
(following Holmstrom and Milgrom 1991) mostly
assumes a linear compensation scheme without care-
ful justification of optimality. Third, the observability
of our multidimensional output signal is imperfect,
microfounded through demand censoring. By con-
trast, the literature typically assumes perfect ob-
servability on all dimensions of the output signal.
As we reveal, unobservability provides rich manage-
rial implications.

Thematically, demand censoring plays a significant
role in our analysis.3 By providing a novel connec-
tion between understanding customer demand and
designing compensation plans, our paper enriches
a stream of literature on demand censoring (e.g., Huh
et al. 2011, Besbes and Muharremoglu 2013, Feiler
et al. 2013, Rudi and Drake 2014, Jain et al. 2015). In
particular, Besbes andMuharremoglu (2013) show an
exploration–exploitation trade-off in a multiperiod
inventory control problem without moral hazard.
They show in the case of a discrete demand distri-
bution that the lost-sales indicator voids the need for
active exploration. Jain et al. (2015) study another
multiperiod inventory control problem (also without
moral hazard) and numerically show that the timing
information of stockout can help recover much of the
inefficiency from demand censoring. Related to this
literature, we show that a noisy signal of the lost
demand can resolve ex post moral hazard issues.

Finally, we advance the methodology of principal-
agent theory by using a bang-bang approach to solve
risk-neutral, limited-liability moral hazard problems
with finitely many actions. Although optimal control
is a classical tool in economics, marketing, and op-
erations (see, e.g., Sethi and Thompson 2000; Crama
et al. 2008), to our knowledge, the application of this
type of logic in the moral hazard literature is limited.
We model the risk-neutral setting, which makes the
problem linear, so optimality is based on extremal
solutions with a bang-bang structure. We explore this
approach generally to provide a methodological un-
derstanding of the approach thatwe believemay be of
separate interest for contract theory researchers. Our
work applies results from a particularly cogent pre-
sentation of optimization in L∞ spaces in Barvinok
(2002, sections III.5 and IV.12). This general setup
treats linear optimal control as a special case.

3. Model
Consider a multitasking store manager (the agent)
hired by a firm (the principal) to make operational
effort eo and marketing effort em. We assume that eo
and em take on at most finitely many values. Opera-
tional effort concerns increasing available inventory,
and marketing effort concerns increasing demand.
The principal cannot directly observe the effort choices
of the storemanager; they can only be indirectly inferred
by observing inventory and demand realizations.
Let us be more precise about the mechanics of

operational effort and realized inventory. The firm
supplies the store manager with an initial inventory
level Ī. The realized inventory I ≤ Ī is all that is
available to meet demand. The difference Ī − I is
unavailable to meet demand because of a variety of
factors, including theft, damage, spoilage, and mis-
shelving. Operational effort stochastically affects these
factors to improve realized inventory. Until Section 9.2,
we focus on the underlying incentive issues for ef-
fectively handling a given stock of inventory (i.e., Ī
is exogenous).
The cumulative distribution function of realized

available inventory I is F(i|eo)with probability density
function f (i|eo), where i ∈ [0, Ī]. We denote demand
by Q, its cumulative distribution function by G(q|em),
and its probability density function by g(q|em) for
q ∈ [0, Q̄], where Q̄ is an upper bound on demand.4

These assumptions imply that operational effort does
not affect demand and that marketing effort does
not affect the realization of available inventory. Ac-
cordingly, for every effort level, the random variables
I andQ are independent. Both density functions f and
g are continuous functions of their first argument.
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Wemake a standard assumption (see, e.g., Grossman
and Hart 1983, Rogerson 1985) that the output dis-
tributions f (I|eo) and g(Q|em) satisfy the monotone
likelihood-ratio property (MLRP); that is,

f i|eo( )
f i|êo( ) nonincreasing in i for eo < êo and

g s|em( )
g s|êm( ) nonincreasing in s for em < êm. (1)

The MLRP implies that a better inventory (demand)
outcome is more informative of the fact that the store
manager has exerted operational (marketing) effort.
The MLRP is satisfied by most of the commonly used
families of distributions.

The (random) sales outcome is denoted S≜min{I,Q}.
To reflect the phenomenon of demand censoring, we
assume that both the firm and the store manager
observe the realized inventory level and sales out-
come, but neither can observe the realized demand in
excess of the realized inventory level. We assume that
Q̄ ≥ Ī to allow for the possibility that demand is
censored at its highest level.

The store manager is effort averse. His or her dis-
utility from exerting efforts (eo, em) is given by c(eo, em).
We assume that c(eo, em) is increasing in both di-
mensions of effort.

The firm designs a compensation plan w(I,S) to
maximize its total expected revenue less the total
expected compensation to the store manager. We
assume that both the firm and the store manager are
risk neutral but with limited liability, bounding w
below by w and above by w̄. The lower bound on
compensation (w) is normalized to zero without loss.
The latter (w̄) implies that the firm is budget con-
strained and cannot compensate beyond w̄. This bud-
get w̄ is known to both the firm and the storemanager.
Assuming an upper bound for the compensation level
is fairly common in the contract theory literature (e.g.,
Holmstrom 1979, Innes 1990, Arya et al. 2007, Jewitt
2008, Bond and Gomes 2009). In particular, Bond and
Gomes (2009, p. 177) provide a variety of motivations
for it, such as “a desire to limit the pay of an employee
to less than his/her supervisor.” We take w̄ as given
until Section 9.1, in which we generalize the upper
bound on w(i, s) to be a more general resource con-
straint that is an integrable function of i and s.

The sequence of events is as follows. First, the firm
offers a compensation plan w(i, s) to the store man-
ager, who either takes it or leaves it. Second, if the
compensation plan is accepted, the store manager
chooses an operational effort eo and amarketing effort
em. Both efforts are exerted simultaneously. Third,
inventory I and demand Q outcomes are realized si-
multaneously, and inventory and sales S & min{Q, I}
are observed. Each unit of met demand yields the

principal a margin of r, unmet demand is lost and
unobserved, and unused inventory is salvaged at a
return normalized to zero. Fourth, the firm com-
pensates the store manager according to w(·, ·). Be-
cause initial inventory Ī is given, the cost of procuring
inventory is sunk.Accordingly,wemay formulate the
firm’s problem as

max
w,e∗o,e∗m

rE S|e∗o , e∗m
[ ] − E w I, S( )|e∗o , e∗m

[ ] (2a)

s.t. S & min Q, I{ }, (2b)
E w I,S( )|e∗o , e∗m
[ ] − c e∗o , e∗m

( ) ≥ U , (2c)
E w I, S( )|e∗o , e∗m
[ ] − E w I,S( )|eo, em[ ]
≥ c e∗o , e∗m

( ) − c eo, em( ) for all eo, em( ), (2d)
0 ≤ w i, s( ) ≤ w̄ for all i, s( ), (2e)

where the expectation E[·|eo, em] is taken over the
joint distribution of I and S at effort levels eo and em.
The participation constraint (2c) ensures that the
store manager’s expected net payoff is no lower
than a reservation utility U, and the incentive com-
patibility (IC) constraint (2d) ensures that choosing
(e∗o , e∗m) over all other effort levels is optimal for the
store manager.
We refer to problem (2) as a multitasking store man-

ager problem. This problem is conceptually chal-
lenging. Indeed, it is a bilevel optimization problem
with an infinite-dimensional decision variable w. De-
riving the form of an optimal compensation plan w(·, ·)
requires a methodical exploration of optimality condi-
tions in this setting.

4. A Bang-BangOptimal Control Approach
In this section, we study a general class of risk-neutral
moral hazard problems with finite agent action sets.
Our approach applies more broadly than the multi-
tasking store manager setting, so we describe it in a
general notation not overly specific to its use in
this paper.
Consider a moral hazard problem between one

principal and one agent. The agent has a finite set of
actions! & {!a 1,!a 2, . . . ,!a m}; we use the arrownotation
!a to denote a vector. In the multitasking setting, this
assumption implies a finite number of operational effort
levels eo, a finite number of marketing effort levels em,
and that each action!a ∈ ! is a pair of efforts !a & (eo, em).
The agent incurs a cost c(!a ) for taking action !a ∈ A,

where we assume that c(!a ) is increasing in !a . The
output is a vector !x ∈ -, where - is a compact subset
of Rn, for some integer n.5 The random output X has a
density function f (!x |!a ), where f (·|!a ) is in L1(-) for all
!a ∈ ! and f (!x |!a ) > 0 for all !x ∈ - and !a ∈ !; the no-
tation L1(-)denotes the space of all absolutely integrable
functions on - with respect to the Lebesgue measure
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on Rn. This general formulation allows the signals to
be correlated and depend on combinations of efforts.

The principal offers the agent the wage contract w :
- → R that pays out according to the realized out-
come. The principal values outcome !x ∈ - according
to the valuation function π : - → R. The agent has
limited liability andmust receive a minimumwage of
w almost surely. We normalize w to zero. Moreover,
the principal has a constraint that tops compensation
out at w̄; that is, w(x) ≤ w̄ for almost all x ∈ -. Finally,
the agent has a reservation utilityU for his or her next-
best alternative.

Both the principal and agent are risk neutral. The
expected utility of the principal is denoted V(w,!a )≜∫
x∈-(π(!x ) − w(!x ))f (!x |!a )dx, and the expected utility of
the agent is U(w,!a )≜

∫
!x∈- w(!x )f (!x |!a )d!x − c(!a ). We

formulate the moral hazard problem as

max
w,!a

V w,!a
( ) (3a)

s.t. U w,!a
( ) ≥ Ū , (3b)

U w,!a
( ) −U w,!a i( ) ≥ 0 for

i & 1, 2, . . . ,m , (3c)
0 ≤ w ≤ w. (3d)

Following the two-step solution approach developed
by Grossman and Hart (1983), we suppose that an
implementable target action !a ∗ has been identified.
This approach reduces the problem to

min
w

∫

!x∈-
w !x
( )

f !x |!a ∗( )
d!x (4a)

s.t.
∫

!x ∈-
w !x
( )

f !x |!a ∗( )
d!x ≥ U , (4b)

∫

!x∈-
Ri !x
( )

w !x
( )

f !x |!a ∗( )
d!x ≥ c !a ∗( ) − c !a i( )

for

i ∈ 1, 2, . . . ,m{ } such that !a i )& !a ∗,
(4c)

0 ≤ w ≤ w, (4d)

where we use the fact that V(w,!a ) & E[π(!x )|!a ∗] −
∫
!x ∈-

w(!x )f (!x |!a ∗)d!x , drop the constant E[π(!x )|!a ∗] from the
objective, convert to a minimization problem, and
simplify the constraint (3c) by defining

Ri !x
( )

≜ 1 − f !x |!a i( )
f !x |!a ∗( ) (5)

for i & 1, 2, . . . ,m. Finally, we drop the IC constraint
for !a i & !a ∗ because this constraint is always satisfied
with equality.

A bang-bang contract is a feasible solution to (4),
where w(!x ) ∈ {0,w} for almost all !x ∈ -.

Theorem 1. An optimal bang-bang contract for (4) exists.

Next, we characterize when an optimal bang-bang
contract takes the value of zero and when it takes the
value w̄. This characterization is associated with a
trigger value of aweighted sumof appropriately defined
covariances of the contract with the likelihoods of out-
comes under different actions. Our analysis uses tools
found in Barvinok (2002, section IV.12).

Theorem 2. There exist nonnegative multipliers ωi and a
target t such that an optimal solution to (4) of the following
form exists:6

w∗ !x
( ) & w if

∑m

i&1
ωiRi !x

( ) ≥ t,

0 otherwise,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(6)

where
∑m

i&1 ωi & 1 holds.

Let B≜ {!x ∈ - :
∑m

i&1 ωiRi(!x ) ≥ t} denote the bonus
region of the compensation plan w∗. In other words,
w∗(!x ) evaluates to w̄ inside B and zero outside B.
The contract in (6) has a compelling economic in-

terpretation. Consider the condition
∑m

i&1
ωiRi !x

( ) ≥ t (7)

that defines the bonus region B. Because the ωi values
are nonnegative and sum to one, the left-hand side is a
weighted sum of likelihood ratios that can be viewed
as a measure of the information value (or informa-
tiveness) of outcome !x for determining if the agent
took the target action !a ∗. For the given outcome !x ,
larger values of Ri(!x ) are associated with actions !a i,
where the outcome !x is less likely under action !a i than
action !a ∗. Thus, the larger∑m

i&1 ωiRi(!x ) is, the less likely
the agent is to have deviated from !a ∗. The trigger
condition (7) rewards outcomes whose informative-
ness exceeds the given threshold t. The weights ωi fine-
tune how we measure this informativeness and are
determined by solving a dual problem that “prices”
the significance of deviations to different actions.
In light of this logic, we refer to contracts of the form (6)

as information-trigger contracts (or simply trigger con-
tracts). If the information value (as measured by∑m

i&1 ωiRi(!x )) exceeds some trigger value, the agent is
rewarded for that outcome.
The proof of Theorem 2 derives ωi and t from

solving a dual optimization problem. However, an-
other approach is to solve a restricted class of the
primal moral hazard problem (4) where contracts are
information-trigger contracts of the form (6). Ifw is an
information-trigger contract,

V w,!a ∗( ) & w̄
∫

!x ∈- subject to∑m
i&1

ωiRi !x( )≥t
f !x |!a ∗( )

d!x

& w̄P
∑m

i&1
ωiRi !X

( )
≥ t

[ ]
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and
∫

!x∈- subject to∑m
i&1

ωiRi !x( )≥t
Ri !x
( )

w !x
( )

f !x |!a( )
d!x

& w̄E Ri !X
( )∑m

i&1
ωiRi !X

( )
≥ t

⃒⃒
⃒⃒
⃒

[ ]
,

where P[·] is the probability measure, and E[·] is the
expectation operator associated with f (·|!a ∗). By using
this notation, the restriction of (4) over trigger con-
tracts of the form (6) is

min
ω,t

w̄P
∑m

i&1
ωiRi !X

( )
≥ t

[ ]
(8a)

s.t. w̄P
∑m

i&1
ωiRi !X

( )
≥ t

[ ]
− c !a ∗( ) ≥ U , (8b)

w̄E Ri !X
( )∑m

i&1
ωiRi !X

( )
≥ t

⃒⃒
⃒⃒
⃒

[ ]
≥ c !a ∗( )− c !a i( )

for i∈ 1,2, . . . ,m{ }, (8c)
∑m

i&1
ωi & 1 , (8d)

ωi ≥ 0 for all i ∈ 1, 2, . . . ,m{ }. (8e)

The next result relates optimality in this problem to
the original problem (4).

Theorem 3. Problem (8) has the same optimal value as (4).
Moreover, an optimal solution to (8) corresponds to an
optimal solution to (4).

Theorem 3 says that it suffices to solve the finite-
dimensional problem (8) to solve the original moral
hazard problem.

5. Analyzing the Multitasking Store
Manager Problem

Wenow study the storemanager problem introduced in
Section 3 using the bang-bang approach of Section 4.

5.1. General Optimality Structure
Theorem 2 applies directly to the store manager prob-
lem (2). A critical object needed to define information-
trigger compensation plans of the form (6) is the joint
distribution of S and I. DemandQ and inventory I are
assumed to be independent, and hence, deriving their
joint distribution is straightforward. Deriving the
joint distribution of the sales and inventory is more
difficult because of demand censoring. The following

lemma provides the joint cumulative distribution
function Pr(I ≤ i,S ≤ s|eo, em) of I and S.

Lemma 1. The joint cumulative distribution function

Pr I ≤ i,S ≤ s|eo, em( )

& F s|eo( ) + G s|em( ) F i|eo( ) − F s|eo( )[ ] if s < i,
F i|eo( ) if s & i.

{

Before deriving the joint probability density func-
tion, we briefly discuss the domain of compensation
plans. Note that D≜ {(i, s) : 0 ≤ s ≤ i and 0 ≤ i ≤ Ī} is
the domain of any feasible compensation plan because of
demand censoring. We also denote by DNSO ≜ {(i, s) ∈
D : s < i} andDSO ≜ {(i, s) ∈ D : s & i} the regions of the
domainwhere no stockout occurs andwhere stockout
occurs, respectively. For simplicity, we denote byw(i)
the compensation level when s & i; that is, we shorten
w(i, i) to w(i).
The underlying measure of tuples (i, s) is absolutely

continuous when s < i, whereas along the 45◦ line for
each i, a point mass of weight 1 − G(i|em) at (i, i) is
present. The joint probability density function of S
and I is thus h(i, s|eo, em) & f (i|eo)g(s|em) for s < i and
h(i, i|eo, em) & f (i|eo)(1 − G(i|em)) when s & i.
Given this density function, using (5), we represent

the ratio function Reo,em (i, s) as

Reo,em i, s( )

& 1 − I i > s[ ] f i|eo( )g s|em( ) + δ i & s( )f i|eo( ) 1 −G i|em( )(
I i > s[ ] f i|e∗o

( )
g s|e∗m
( )+ δ i & s( )f i|e∗o

( )
1 −G i|e∗m

( )( ,

where I[·] is the indicator function, and δ(i & s) is a
Dirac function at i. We describe an optimal information-
trigger compensation plan in two different scenarios:
(1) where i > s (no stockout) and (2) where i & s (stock-
out), by defining appropriate ratio functions. In the
nonstockout (NSO) case,

RNSO
eo,em i, s( ) & 1 − f i|eo( )g s|em( )

f i|e∗o
( )

g s|e∗m
( ) , (9)

and in the stockout (SO) case,

RSO
eo,em i( ) & 1 − f i|eo( ) 1 − G i|em( )(

f i|e∗o
( )

1 − G i|e∗m
( )( . (10)

Theorem 2 implies that an optimal compensation plan
takes the following form:

w∗ i, s( ) & wNSO i, s( ) if i, s( ) ∈ DNSO,
wSO i( ) if i, s( ) ∈ DSO,

{
(11)
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where

wNSO i, s( ) &
w if

∑

eo,em
ωeo,emR

NSO
eo,em i, s( ) ≥ t,

0 otherwise,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wSO i( ) &
w if

∑

eo,em
ωeo ,emR

SO
eo ,em i( ) ≥ t,

0 otherwise,

{

for some choice of t and nonnegative ωeo ,em satisfy-
ing ∑

eo,em ωeo,em & 1.
Recall that B denotes the bonus region of the

information-trigger compensation plan w∗ defined
in (6).We adopt that notation here and refine it further
by setting

BNSO ≜ i, s( ) ∈ DNSO :
∑

eo,em
ωeo ,emR

NSO
eo ,em i, s( ) ≥ t

{ }
, (12)

BSO ≜ i, s( ) ∈ DSO :
∑

eo,em
ωeo ,emR

SO
eo ,em i, s( ) ≥ t

{ }
. (13)

Akey observation here is that the bonus region BNSO is
possibly a full-dimensional subset of the NSO region
of the domain DSO, whereas the bonus region BSO is a
one-dimensional set along the 45◦ line DSO.

5.2. Mast-and-Sail Compensation Plans
Throughout the rest of this paper, we make more
concrete the structure of the optimal compensation
plan (11) in a special multitasking setting with two
levels—high (H) and low (L)—for each of the opera-
tional and marketing efforts. In the notation of Sec-
tion 4, ! & {(eHo , eHm), (eHo , eLm), (eLo , eHm), (eLo , eLm)}. We also
assume the target action is (eHo , eHm), that is, for the store

manager to make his or her best effort in both oper-
ations and marketing. For a discussion of scenarios
where other effort levels may be targeted, see Section
OA.6 of the online appendix.
We first look into the structure of BNSO under these

assumptions.

Proposition 1. Anonincreasing and continuous function s∗ and
is ∈ (0, Ī] exist such thatBNSO & {(i,s) : i≥ is and s∗(i)≤ s< i}.7

Because s∗(i) is a nonincreasing and continuous
function of i on its domain, the bonus region re-
sembles the one shown in Figure 1(a). We call the
shape of this region a sail.

Proposition 2. An inventory value im ∈ (0, Ī] exists such
that BSO & {(i, s) : s & i ≥ im}.
Figure 1(b) gives a visualization of the bonus region

BSO. We call this region a mast.
Taken together, the bonus region of the optimal

compensation plan w∗ defined in (11) is the union of
the regions in Propositions 1 and 2. Figure 2, (a)
and (b), illustrates two of the possible structures of
this union that result from the regions failing to
“overlap” perfectly. When is > im, the bonus region
has an inherent nonconvexity at (is, is), as illustrated in
Figure 2(a). The shape in this figure makes clear our
usage of the phrasemast and sail to describe the bonus
region of an optimal compensation plan.When is < im,
the mast and sail (with what looks like a mast that is
too short for its sail) overlap to form a region that is
not closed, as illustrated in Figure 2(b). The next result
shows that only the structure seen in Figure 2(a)
is possible.

Proposition 3. In every optimal compensation plan w∗ of
the form (11), we have i∗s ≥ i∗m.

Figure 1. Illustrations of the Sail and Mast Regions
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5.3. Are Marketing and Operational Outcomes
Complements or Substitutes?

Mast-and-sail compensation plans have several interest-
ing properties. We discuss a key one (nonmonotonicity)
in the next section. Herewe examinewhether operational
andmarketing outcomes act as complements or substitutes.

Proposition 4. As i increases, (a) if im ≤ i < is, the mini-
mum sales quantity required for the store manager to qualify
for the bonus strictly increases (“moving up the mast”),
and (b) if i ≥ is, the minimum sales quantity s∗(i) required
for the store manager to qualify for the bonus decreases
(“slipping down the sail”).

Proposition 4(a) reveals that in the mast part of the
bonus region (i.e., the region with i < is), which cor-
responds to stockout scenarios, a high realized in-
ventory level has to be accompanied by a high sales
outcome. The complementarity in the compensation
plan takes such an extreme form that the sales threshold
is exactly equal to the inventory outcome. Because the
inventory is not sufficiently high, the firm expects the
agent to generate a high enough demand to clear all
the inventory to demonstrate that the agent has exerted
sufficient marketing effort.

In the sail part of the bonus region (i.e., the region
with i ≥ is), as inventory increases, theminimum sales
quantity to receive the bonus decreases. Intuitively, if
inventory is high, one might expect the firm to only
reward highermarketing effort to clear the inventory.
Slipping down the sail seems to suggest that lower
marketing efforts are also tolerated, precisely when
the store has a lot of inventory. Might this realization
send the wrong signal to store managers, namely that
they can slack off inmarketingwhen they keep a lot of
inventory in the store? Can slipping down the sail
induce a “slipping” in marketing effort?

To see that this is not the case, slipping down the
sail occurs only when inventory meets the minimum
threshold is, indicating a sufficiently high likelihood
that a significant operational effort has been invested.
Slipping down the sail is not meant as an enticement
for low marketing effort; rather, it comes as an ac-
knowledgment that high marketing effort may still
result in low demand, and because inventory effort is
already likely to be high, such unlucky outcomes
should not be overly penalized. An upward-sloping
sail heightens penalties for unlucky marketing out-
comes, which for an agent who has already invested
significant operational effort is a deterrent for in-
vesting even in the marketing effort needed to
clear inventory.
More technically, the optimality of slipping down

the sail is connected to theMLRP. TheMLRP suggests
that the informative value of the observed signal (i, s)
increases in both i and s. Note that the sail part cor-
responds to the scenarios without stockouts, so the
true demand is equal to the observed sales quantity.
Thus, the firm can infer the same likelihood that the
store manager has exerted both operational and mar-
keting efforts based on either (1) a low inventory level
and a high demand outcome or (2) a high inventory level
and a lower demand outcome. For this reason, opera-
tions and marketing act as substitutes in the optimal
compensation plan.

6. Ex Post Moral Hazard in Mast-and-Sail
Compensation Plans

In this section, we explore the monotonicity of the
mast-and-sail structure. Tomake things concrete, and
because a compensation plan has two arguments
(i and s), we start with carefully defining monotonicity.

Figure 2. Two Possible Structures of the Union of the Mast and Sail Bonus Regions
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We say thatw(i, s) ismonotone in i if w(i′, s) ≤ w(i′′, s) for
every (i′, s), (i′′, s) ∈ D and i′ ≤ i′′. Similarly, we say
that w(i, s) is monotone in s if w(i, s′) ≤ w(i, s′′) for every
(i, s′), (i, s′′) ∈ D and s′ ≤ s′′. Finally, we say that w(i, s)
is (strictly) jointly monotone if w(i′, s′) ≤ w(i′′, s′′) for all
(i′, s′), (i′′, s′′) ∈ D with i′ < i′′ and s′ < s′′.8

Proposition 5. For an optimal compensation plan w∗ of the
form (11), (a) w∗ is monotone in s, (b) if is & im, w∗ is also
monotone in i and jointly monotone, and (c) if is > im, w∗ is
neither monotone in i nor jointly monotone.

Figure 3 provides the intuition for this result.
Proposition 5(a) concernsmonotonicity in the vertical
direction,which clearly holds in thefigure becausewe
never move beyond the 45◦ line in the vertical di-
rection. Proposition 5(b) concernsmonotonicity in the
horizontal direction. Moving a short distance hori-
zontally from the bottom corner (im, im) of the mast
drops the store manager’s compensation from having
the bonus to losing the bonus. Lastly, Proposition 5(c)
concerns moving northeast in the graph. As shown in
Figure 3, a move from the corner (im, im) of the mast to
the point (i◦, s◦), where i◦ & is+ε for some positive ε and
s◦ & s∗(i◦), again drops the bonus for the store manager.

As discussed at length in the Introduction, to say an
optimal compensation plan is not monotone in every
sense is somewhat nonintuitive. Indeed, as seen in
Figure 3, the store manager could be worse off for
achieving strictly better inventory and sales out-
comes. When stockout occurs along the mast part of
the bonus region, the realized demand is censored by

the inventory level. The firm’s observed sales quan-
tity is only a lower bound of the realized demand. The
store manager might have made significant market-
ing effort that realized in a high demand level, which
(possibly unluckily) available inventory was not able
to meet. Given the same sales quantity, as inventory
increases, the firm no longer experiences stockouts.
The observed sales quantity is equal to (as opposed to a
lower bound of) the realized demand. Thus, an in-
creased realized inventory level may be informative
of the fact that the store manager has not exerted high
marketing effort. In otherwords, to encourage greater
marketing effort, the firm is rewarding the possibility
of a high demand realization when inventory stocks
out. When the uncertainty surrounding realized de-
mand (as opposed to sales) is removed, better per-
formance is required to warrant the bonus.
Interesting as the preceding nonmonotonicity prop-

erty is, it may raise implementability concerns. If in-
ventory can be hidden from the principal ex post, which
does not seem entirely inconceivable, the compensation
plan becomes faulty. To see this possibility concretely,
suppose that a store manager realizes inventory and
sales (i′, s′) with i′ > im but does not receive a bonus.
This scenario occurs, for instance, when i′ ∈ (im, is) and
i′ < s′ < s∗(i′). If the store manager could hide some of
the realized inventory (or claim that it was “shrunk”)
to reveal an output of (i′, i′), he or she would receive a
bonus. In otherwords, the storemanager is effectively
rewarded for disposing of inventory, meaning that
the ex post moral hazard issue is inherent with con-
tracts that are nonmonotone in inventory.
In practice, inventory can neither be freely hidden

nor perfectly observed. The ex post moral hazard
problem of manipulating inventory is thus similar to
costly state falsification problems studied in the ac-
counting and economics literature (see, e.g., Lacker
and Weinberg 1989, Beyer et al. 2014). Monitoring ex
post manipulation by the firm is itself limited, and
penalties are difficult to enforce. Indeed, the setup of
our problem supposes that the marketing and oper-
ational efforts of the store manager are not observable
to the firm. This setup suggests that monitoring of
inventory is limited for the same reasons. To the
extent that a careful accounting of realized inventory
and assessment of store manager effort are con-
founded, the nonmonotonicity of the mast-and-sail
compensation plan is an endemic issue. If, under some
method, inventory realizations can be observed and
operational effort remains hidden, the nonmonotonicity
of the mast-and-sail compensation plan is less of a
concern. However, we are unaware of such tools for use
in practice.

Figure 3. An Illustration of the Lack of Joint Monotonicity
of an Optimal Compensation Plan
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In the rest of this paper, we search for alternate
compensation plans that resolve the ex post moral
hazard issue of inventory manipulation.

7. Monotone (But Not Optimal)
Compensation Plans

In the preceding two sections, we have characterized
an optimal mast-and-sail compensation plan, but these
compensation plans suffer from nonmonotonicity, lim-
iting their practicality in the presence of ex post moral
hazard over the hiding of inventory.9 This issue moti-
vates interest in exploring the performance of classes
of implementable compensationplans that aremonotone.

There are two natural candidates for implement-
able compensation plans. The first is a bonus com-
pensation plan where a bonus is given if both a sales
and inventory quota are met, termed a corner com-
pensation plan in the Introduction. The other candi-
date is a modification of the mast-and-sail plan by
snipping the mast to remove the nonconvexity of the
bonus region (and thus ensuring monotonicity) and
linearizing the downward-sloping s∗ function de-
fining the sail in Proposition 1. Our goal in studying
these two candidate solutions is to assess the extent
of optimality loss associated with monotonicity using
the optimal mast-and-sail compensation plan as
the benchmark.

7.1. Corner Compensation Plans
Corner compensation plans build on the logic of the
quota-bonus compensation plans that are optimal in
the risk-neutral setting in the salesforce compensation
literature (Oyer 2000; Dai and Jerath 2013, 2016). A
corner compensation plan (a, b) is one where any

outcomes (i, s) with i ≥ a and s ≥ b earn a bonus 0 ≤
β ≤ w̄. See Figure 4 for an illustration.
The next result shows that the mast-and-sail com-

pensationplansoftenperform strictly better than corner
compensation plans. We say that f and g satisfy the
strict MLRP; that is, (1) holds with weak inequalities
replaced by strict inequalities. Many commonly studied
families of distributions (e.g., binomial, exponential, log-
normal, normal, and Poisson) satisfy the strict MLRP.

Proposition 6. Given a multitasking store manager prob-
lem described in Section 5.2, with the further restriction that
f and g satisfy the strict MLRP and the agent earns positive
rents, an optimal compensation plan cannot be a corner
compensation plan.

Assuming positive rents for the agent is common in
the literature (e.g., Oyer 2000, Dai and Jerath 2013).
The situation in which the agent earns no rents
yields afirst-best contract whereby the incentive issue
does not have any “bite” and is thus less interesting as
an incentive problem. Using similar reasoning as the
proof of this proposition, one can show that the best
corner compensation plan with bonus w̄ outperforms
every other corner compensation plan. Accordingly,
we focus on corner compensation planswith bonus w̄.
Moreover, observe that compensation plans rewarding
sales only are achieved by setting a & b, and those
rewarding inventory only are achieved by setting
b & 0. Single-tasking compensation plans are special
cases of corner compensation plans and so are (weakly)
dominated by the optimal corner compensation plan.
Additional analytical performance bounds are hard

to come by, in no small part because of the challenging
nature of computing the parameters of the optimal
compensation plan. The difficulty is that the weights
ωi and t in (12) and (13) must be computed to get a
sense of the shape of the mast and sail. Problem (8)
and Theorem 3 provide our best hope for computing
ωi and t in general. However, (8) is a challenging
optimization problem and, to our knowledge, does
not readily admit analytical characterizations that can
be used to provide bounds. For this reason, we pri-
marily use numerical calculations to further compare
various compensation plans.
To numerically quantify the performance loss of

corner compensation plans, we need to describe the
structure of an optimal corner compensation plan.
Luckily, the analysis under a corner compensation
problem greatly simplifies, as evidenced by the fol-
lowing simple result.

Proposition 7. The expected wage payout of the corner
compensation plan (a, b) is w̄(1 − F(a|e∗o )(1 − G(b|e∗m), where
(1 − F(a|e∗o )(1 − G(b|e∗m) is the probability of paying out
the bonus and where (e∗o , e∗m) is the target effort level to be
implemented.

Figure 4. Illustration of a Corner Compensation Plan
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Given this characterization of expected wage payout,
problem(2) evaluated at the corner compensation plan
(a, b) becomes (after some basic simplifications)

max
a,b,a≥b

rE S
⃒⃒
eHo ,e

H
m

[ ]−w̄ 1−F a
⃒⃒
eHo

( )[ ]
1−G b

⃒⃒
eHm

( )[ ]
(14a)

s.t. 1 − F a
⃒⃒
eHo

( )[ ]
1 − G b

⃒⃒
eHm

( )[ ]

− 1 − F a
⃒⃒
eLo

( )[ ]
1 − G b

⃒⃒
eLm

( )[ ]

≥
c eHo , e

H
m

( )
− c eLo , e

L
m

( )

w̄
, (14b)

F a
⃒⃒
eLo

( )
− F a

⃒⃒
eHo

( )[ ]
1 − G b

⃒⃒
eHm

( )[ ]

≥
c eHo , e

H
m

( )
− c eHo , e

L
m

( )

w̄
, (14c)

1 − F a
⃒⃒
eHo

( )[ ]
G b

⃒⃒
eLm

( )
− G b

⃒⃒
eHm

( )[ ]

≥
c eHo , e

H
m

( )
− c eLo , e

H
m

( )

w̄
, (14d)

assuming that we look at the setting where the store
manager earns positive rents (as discussed after
Proposition 6). Optimal solutions to (14) are relatively
easy to characterize, depending on which of the
constraints are slack or tight. The next result follows
from this reasoning.

Proposition 8. If constraint (14b) is tight at optimality, the
optimal corner compensation plan (a, b) has a and b satisfy
the equation

*f a|eHo
( )

*g b|eHm
( ) & *f a|eLo

( )

*g b|eLm
( ) , (15)

where *f (a|e∗o ) & f (a|e∗o )
1−F(a|e∗o ) is the hazard rate for density f ,

and*g is the hazard rate of density g. By contrast, if (14b)
does not bind, then a & b, where a is characterized by setting
either constraint (14c) or constraint (14d) to be tight.

This structure assists us in running numerical ex-
periments to evaluate the performance of optimal
corner compensation plans. For an illustration of how
to use these results, see a concrete numerical example
in Section OA.3 of the online appendix. Here we
present two representative and contrasting scenarios
in Figure 5, (a) and (b). Figure 5(a) shows that the
performance of the corner compensation plan is close
to optimal (within 1%) when the marketing and oper-
ational activities are highly complementary in terms of
the agent’s cost structure. By contrast, Figure 5(a)
shows that when the marketing and operational ac-
tivities are not sufficiently complementary, the per-
formance of the corner compensation plan is far from
optimal, with a gap of up to 18%.
In certain cases, the corner compensation plan fails

to induce the target action achievable under the op-
timal compensation plan. Example 1 provides one
such example. Although the corner compensation
planmay lead to a lower expected compensation than
the optimal compensation plan, the firm’s expected
sales quantity is also lower because of the store
manager’s lower effort than the desired one. Thus,
under a sufficiently high unit revenue (so that the
target action entails high effort in both operational
and marketing activities), the firm’s expected profit is
higher under the mast-and-sail compensation plan.
Indeed, for this type of scenario, we can show that the
efficiency loss under the corner compensation plan
increases linearly in the unit revenue. In other words,

Figure 5. (Color online) Performance of Optimal Corner Compensation Plan vs. Optimal Mast-and-Sail Compensation Plan

Note. We assume that F(i|eo) & (H(i))eo and G(s|em) & (L(s))em , where H(i) & i and L(s) & s.
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the worst-case loss in performance of corner com-
pensation plans is arbitrarily large.

Example 1. Consider the following instance in which
eo ∈ {eLo , eHo } and em ∈ {eLm, eHm}, where eLo & eLm & 1 and
eHo & eHm & 2. The target action is (eHo , eHm) & (2, 2). The cost
function is c(eHo ,eHm)& 3.1, c(eHo ,eLm)& 1, c(eLo , eHm) & 1.6,
and c(eLo , eLm) & 0.1. The resource constraint for the firm
is w̄ & 10. For this instance, we can show that the firm
can use a mast-and-sail compensation plan with ω∗eLo ,eLm &
0,ω∗eHo ,eLm & 0.8602, ω∗eLo ,eHm & 0.1398, and t∗ & 0.1817 to in-
duce the target action, under which the store manager’s
probability of receiving the bonus is 58.70%. However,
no corner compensation plan exists that can induce the
target action. Indeed, the best that the corner compen-
sation plan can achieve is to induce (eHo , eLm) with pa-
rameters of a∗ & b∗ & 0.6186, under which the store
manager’s probability of receiving the bonus is 23.55%.
We illustrate the firm’s expected profits under both types
of compensation plans in Figure 6 as a function of the per-
unit revenue rate r.

7.2. Modifying Mast-and-Sail Compensation Plans
for Implementability

In Section 7.1, we used a single-tasking logic to con-
struct and evaluate corner compensation plans, with
the sales-quota-bonus compensation plan being the
simplest case, and found that its performance de-
pends on the store manager’s cost structure and can
be far from optimal.We now switch gears to using our
mast-and-sail compensation plan as inspiration for
designing ex post implementable compensation plans.
We do so in two directions: (1) removing the mast
(i.e., setting im & is) and (2) linearizing the downward-
sloping function s∗ in Proposition 1. Removing the
mast ensures monotonicity of the compensation plan,
and linearizing s∗ makes communicating the com-
pensation plan to sales managers easier in practice.10

Together this effort amounts to finding the best
compensation plan where the bonus region is char-
acterized by a downward-sloping line (creating a
“triangular sail” like that in Figure 7). We call such
compensation plans weighted-sum threshold compen-
sation plans because the payout of the bonus is de-
termined by the weighted sum of the sales quantity
and inventory level. Specifically, the agent receives a
bonus if the realized sales quantity s and inventory
level i satisfy s + κ1 · i ≥ κ2, for some κ1, κ2 ≥ 0.11 To
find the optimal weighted-sum threshold compen-
sation plan, one searches over the values of κ1 and κ2
that give the best payoff to the firm.
Numerical results (see Figure 8) show that the

optimalweighted-sum threshold compensation plans

Figure 6. (Color online) Expected Profits Under Optimal the
Mast-and-Sail andCornerCompensationPlansvs.RevenueRate r

Figure 7. An Illustration of a Weighted-Sum-Threshold
Compensation Plan

Figure 8. (Color online) Expected Profits Under Optimal the
Mast-and-Sail and Corner Compensation Plans vs. c(eHo , eLm)
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also perform poorly (indeed, as poorly as corner
compensation plans) in bad cases (losses of up to 18%
in this example). We conclude that the loss due to
monotonicity captured by the ex post moral hazard
issue that afflictsmast-and-sail contracts has no easyfix.
The next section shows, however, with some additional
information, that this issue can be resolved.

8. Resolving Ex Post Moral Hazard
Through Gauging
Unsatisfied Demand12

In previous sections, we assumed that any demand in
excess of inventory could not be observed. We now
consider a more general setting where partial infor-
mation is revealed when demand exceeds sales. In
particular, we assume that some random (and un-
known) fraction of customers who do not receive the
product express interest via a waiting list (or some
other method of capturing unsatisfied demand). We
introduce a new random variable13

Θ :& Λ Q − I( ) + I, (16)

where Λ is a continuous random variable distributed
on (0, 1). When Q, I, and Λ realize outcome (q, i,λ),
where q > i, λ can be interpreted as the fraction of
customers who sign the waiting list when facing
stockout. We call Λ the random fraction of captured
demand (or simply the fraction).

We define a new random variable

Z :& Z I,Q,Θ( ) & Q if Q ≤ I
Θ if Q > I

{
(17)

that captures what demand information can be ob-
served. We cannot observe Q when Q > I, and we
cannot observe Θ when Q ≤ I. We assume that the
conditional density function γ(θ|q, i) for all q, i such
that q > i is known to both the firm and the store
manager. This assumption amounts to knowing the
probability density function ϕ of the fraction Λ, be-
cause in this case γ(θ|q, i) & 1

q−iϕ(θ−iq−i).
The firm and store manager observe I and Z. When

Z & Θ, the product Λ(Q − I) can be observed (because
I is also observable), but knowledge of this product
does not revealΛ orQdirectly. That is, the proportion
of unsatisfied customers who sign up for the waiting
list is not observable. The derived signal Z captures
intermediate degrees of demand censoring. In the
classical censoring case, Θ is precisely I with Λ a
constant at zero. Accordingly, Z becomes the random
variable S studied in earlier sections. Similarly, the
situation where demand is observed sets Θ & Q with

Λ a constant at one; this full-information case is ex-
plored in Section OA.4 of the online appendix.
Because the firm and the store manager observe I

and Z, the compensation planw is a function of I and Z.
The same bang-bangmethodology applies to this new
setting because the underlying problem remains lin-
ear in w. The optimal compensation plan is therefore
defined by characterizing its bonus region where the
store manager receives w̄ using the methodology of
Section 4.
To get a sense of the bonus region, we need to

understand the domain of w. According to (17), two
regions of the domain need to be considered: (1) the no
lost sales (NLS) region (where Z ≤ I) and (2) the lost-
sales (LS) region (where Z > I). As before, we may
construct the bonus region in the two “chunks” of the
underlying domain, theNLS region and the LS region.
The joint density functionof (I,Z) can be expressed over
these two regions as follows:

h i, z|eo, em( ) :&
f i|eo( )g z|em( ) if z ≤ i,∫ Q̄

q&i
γ z|q, i( )

g q|em
( )

dqf i|eo( ) if z > i.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(18)
Using the joint density function in (18), we define the
bonus regions in the NLS and LS regions in terms of
likelihood-ratio functions as follows:

RNLS
eo,em i, z( ) & 1 − g z|em( )

g z|e∗m
( ) · f i|eo( )

f i|e∗o
( ) , (19)

RLS
e0,em i, z( ) & 1 −

∫ Q̄
q&i γ z|q, i( )

g q|em
( )

dq
∫ Q̄
q&i γ z|q, i( )

g q|e∗m
( )

dq
⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟

∗( )

· f i|eo( )
f i|e∗o
( ) , (20)

where e∗o and e∗m are the target effort levels.
The NLS bonus region has a structure analogous to

the NSO bonus region described in Proposition 1.
When z ≤ i, we have z & q & s, and the bonus region is
precisely BNLS & {(i, s) : i ≥ is and s∗(i) ≤ s ≤ i}. The LS
region is more complex because of the dependence of
Θ on both I and Q. Further assumptions are required
to derive an interpretable structure.

Assumption 1. The random variableΘ defined in (16)with
conditional density function γ(θ|q, i) is such that ∂ logγ(θ|q,i)

∂q
is nondecreasing in θ for every i.
This assumption is the MLRP of Θ with respect to

changes in q, given every inventory realization i. As
we have said before, this assumption is common in
the contract theory literature and is satisfied when,
for example, Λ is uniformly distributed (among other
distributions).
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Proposition 9. Under Assumption 1, we have the follow-
ing cases:

a. If
∫ Q̄
i γ(z|q, i)g(q|em)dq is unbounded for all i, then

BLS & i, z( ) : i ≥ is and z > i{ }, and (21)

b. There exists a continuous function ,∗ defined on
[0, is) such that14

BLS & i, z( ) : i < is and ,∗ i( ) ≤ z ≤ Q̄
{ } ∪
i, z( ) : i ≥ is and i < z ≤ Q̄

{ }
. (22)

An important fact used in this proof is that Λ ∈ (0, 1).
We can infer that Q & I (i.e., stockout occurs) when
Z & I because this implies that Λ(Q − I) & 0 and Λ
never realizes to zero. In otherwords, when the signal
Θ is equal to I, no demand is lost. This ensures that the
LS and NLS bonus regions meet at the same point on
the 45◦ line (is).

Figure 9 gives a visualization of the bonus regions
BLS and BNLS in cases (a) and (b) of Proposition 9. Fig-
ure 9(a) was generated assuming that Λ is a power-
law distribution with cumulative distribution func-
tion λα, where α ≤ 1. It is straightforward that this
class of distributions (which includes the uniform dis-
tribution) satisfies the conditions of Proposition 9(a).
We generated Figure 9(b) by considering the case
in which Λ was distributed so that − logΛ is a
Gamma(α, β)distribution. This ensures thatΛ ∈ (0, 1).
It is straightforward to check that the conditions of
Proposition 9(b) are satisfied for this setting. To
generate the figure, we took α & 2 and β & 1/2.

The two different cases for the bonus region have
interesting implications for the question of monoto-
nicity and ex post moral hazard. Observe that in
Figure 9(a), the bonus region is jointly monotone in z
and i. This case is not trivial because it includes the
uniformdistribution andgeneral power-lawdistributions

for the fraction Λ of captured demand. The intuition
here is that by including waiting list information, the
old mast region disappears. The waiting list reveals
sufficient information about marketing effort so that
it is no longer necessary to reward low sales out-
comes. The essential message here is that the bonus
region is now monotone; therefore, the ex post moral
hazard issue of hiding inventory no longer exists.
Indeed, the feasible region BLS is monotone in z, so
even ifweallowdownwardmanipulation of thewaiting
list, there is no incentive to do so.
By contrast, in the bonus region in Figure 9(b), the

waiting-list signal is sufficiently correlated with mar-
keting effort to offer bonuses if the waiting list is suffi-
ciently large, even when the sales target is is not met.
This scenario may lead to bonus regions that are not
jointly monotone in z and i, a result coming from the
fact that Assumption 1 does not require monotonicity
properties of Θ with respect to changes in i. It is
important to point out that it does, nonetheless,
preclude any ex post moral hazard issue of hiding
inventory. In the NSO region of the domain (s < i), the
store manager has no incentive to hide inventory
because of monotonicity in i: the bonus region is
monotone below the 45◦ line. The area above the 45◦
line captures scenarioswith lost sales, so no inventory
is left to hide. Assuming also that the signal Θ cannot
be manipulated by the store manager (e.g., the waiting
list captures that the unique identity of customers can be
directly verified by the firm), no ex post moral haz-
ard arises.
Of course, one may still argue that compensation

planswith bonus regions such as in Figure 9(b) are not
completely intuitive. In practice, a store manager
might wonder why a lower level of sales requires a
smaller waiting-list signal to get a bonus, whereas a
higher sales level requires a larger bonus. The fact that

Figure 9. Illustrations of Lost-Sales Bonus Region BLS
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no scope exists for ex post manipulation does not
change the fact that it could be hard to explain such
compensation plans to store managers. This lack of
joint monotonicity above the 45◦ line can be removed
under the following assumption.

Assumption 2. The random variableΘ defined in (16) with
conditional density function γ(θ|q, i) is such that ∂ logγ(θ|q,i)

∂q
is nondecreasing in i for every θ.

Proposition 10. Under Assumptions 1 and 2, a contin-
uous and nonincreasing function ,∗(i) exists such that BLS &
{(i,z) : i≤ is and ,∗(i)≤ z≤ Q̄}∪ {(i,z) : i≥ is and i≤ z≤ Q̄},
implying that BNLS ∪ BLS has the double-sail structure de-
picted in Figure 10.

It is straightforward to see that the resulting opti-
mal contract w∗(i, z), where w∗(i, z) & w̄ when (i, z) ∈
BNLS ∪ BNLS and zero otherwise, is jointly monotone.
In other words, under the waiting-list approach for
gauging unsatisfied demand (and given the preced-
ing technical conditions), an optimal double-sail com-
pensation plan exists that is monotone. This avoids the
ex post moral hazard hiding of inventory that afflicted
the mast-and-sail compensation plan and has a more
intuitive structure than what we see in Figure 9(b).

One may ask how restrictive Assumptions 1 and 2
are on the distribution of the signal Θ. Note that
distributions that satisfy the condition of Proposi-
tion 9(a) fail this condition but nonetheless give rise
to jointlymonotone bonus regions.We saw in Figure 9
that gamma distributions can give rise to scenarios
with nonmonotone lost-sales bonus regions. How-
ever, one can also check that nonmonotonicity does

not hold for all parameter values. Indeed, an algebra
exercise can verify that whenΛ is such that− logΛ is a
Gamma(α, β) distribution, where α − 1 ≥ 4

e2+1 (1β + 1),
Assumptions 1 and 2 hold, and the resulting contract
is monotone (by Proposition 10).

9. Further Discussions
In this section, we include some additional discussion
on the flexibility of our analytical framework. In
particular, we are able to relax some of the assump-
tions of the base model that were included for ease of
discussion and presentation. Although not central to
our managerial takeaways regarding the connection
between demand censoring, nonmonotonicity, and ex
post moral hazard, we nonetheless consider these
extensions worthy of further discussion.

9.1. The Role of w̄ and More General
Resource Constraints

The role of the upper bound w̄ on compensation is
a delicate one. As mentioned in Section 3, the as-
sumption is not uncommon in the literature and has
been justified elsewhere. However, because w̄ is ex-
ogenous to themodel, a question remains as to how to
interpret it. Can the firm set w̄? If so, how high or low
should it be set? How does w̄ change the optimal
compensation plan?
Changing w̄ does not change the optimality of the

mast-and-sail compensation plan but may change the
relative length of the mast and shape of the sail and
the probability of the agent receiving the bonus un-
der the target actions. If we view w̄ purely as a choice
of the firm and consider its optimization over the
choice of w̄, larger choices of w̄ are obviously better.
Indeed, w̄ only enters in the constraint w(i, s) ≤ w̄, so
increasing w̄ can only improve the objective value of
the firm. This slope is a slippery one. If the choice of w̄
is unconstrained, it will be sent to infinity. When
w̄ & +∞, an optimal compensation plan need not exist
in general. This issue is discussed at length in the
economics literature (see, e.g., Chu and Sappington
2009). We find it natural that, in practice, a natural
upper bound for w̄ would exist that avoids this the-
oretical issue. One possible justification is provided in
Section OA.8 of the online appendix.
We consider here amore general upper bound than w̄.

Let m(i, s) be the available resources for compensa-
tion by the firm when outcome (i, s) prevails. That is,
constraintw(i, s) ≤ w̄ is replaced by constraintw(i, s) ≤
m(i, s) for almost all (i, s). As an example of m(i, s),
consider the following description from DeHoratius
and Raman (2007, p. 521): “BMS [the company they
study] store managers were offered a bonus for
generating sales that ranged from 0.2% to 5% of the
sales dollars above store-specific targets.” In this case,
m(i, s) is a fixed proportion of the store revenue less a

Figure 10. The Double-Sail Bonus Region BNLS ∪ BLS Under
Assumption 1
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store-specific target. In other words, m(i,s)&α · r · s−C,
where r is the per-unit revenue, and C denotes the
store-specific target. The range of α in this case is from
0.2% to 5%.

Our model can be adjusted to the setting with re-
source constraint w(i, s) ≤ m(i, s), assuming that m(i, s)
is an L1 function. Define a new variable β(i, s), where
w(i, s) & β(i, s)m(i, s) and β(i, s) ∈ [0, 1] for almost all
(i, s). The new function β can be interpreted as the
percentage of the resource given to the store manager
as a bonus. The problem becomes

max
β

r
∫

i

∫

s
sf i|e∗o
( )

g s|e∗m
( )

dids

−
∫

i

∫

s
β i, s( )m i, s( )f i|e∗o

( )
g s|e∗m
( )

dids (23a)

s.t.
∫

i

∫

s
β i, s( )m i, s( )f i|e∗o

( )
g s|e∗m
( )

dids

− c e∗o , e∗m
( ) ≥ U, (23b)

∫

i

∫

s
β i, s( )m i, s( )f i|e∗o

( )
g s|e∗m
( )

dids

−
∫

i

∫

s
β i, s( )m i, s( )f i|eo( )g s|em( )dids (23c)

≥ c e∗o , e∗m
( ) − c eo, em( ) for all eo, em( )

0 ≤ β i, s( ) ≤ 1 for all i, s( ). (23d)
This problem is of the form (4), interpreting f (x̄|ā∗) in
that formulation as m(i, s)f (i|eo)g(s|em). Thus, an opti-
mal bang-bang contract exists for (23) with a similarly
nice structure.

Proposition 11. If m is an L1 function, nonnegative mul-
tipliers ωi and a target t exist such that an optimal solution
to (23) of the following form exists:15

w∗ i, s( ) &
m i, s( ) if

∑

eo,em
ωeo,emReo,em i, s( ) ≥ t.

0 otherwise,

{

where

Reo ,em i, s( )

& 1 − I i > s[ ] f i|eo( )g s|em( ) + δ i & s( )f i|eo( ) 1 −G i|em( )(
I i > s[ ] f i|e∗o

( )
g s|e∗m
( ) + δ i & s( )f i|e∗o

( )
1 −G i|e∗m

( )( .

Under the compensation plan specified by Propo-
sition 11, the store manager’s compensation is mono-
tone nondecreasing in s as long as m(i, s) does not
decrease in s.

9.2. Endogenizing Initial Inventory
In this section, we endogenize the choice of initial
inventory Ī. Whether it is more natural for Ī to be
under the control of the firm or the store manager is a
matter of debate. In this paper, we analyze the former.
This perspective particularly applies in settings where
thefirmoversees a large chain of storeswhere ordering is

done centrally. Allowing the storemanager to decide the
initial inventory level gives rise to additional incentive
issues that go beyond our scope.
To set the benchmark, suppose that we can ignore

the incentive compatibility constraint of the store
manager and pay him or her a constant wage to meet
the minimum utility U to work at effort level (eHo , eHm).
Under this assumption, the firm’s problem is maxĪ r×
E[S|Ī] −C(Ī),where C(·) is a convex increasing cost for
procuring inventory Ī, and E[·] is the conditional
expectation given inventory Ī. Thus, the optimal in-
ventory level is the classical newsvendor solution INV

that solves r d
dĪ E[S|INV] & C′(INV).

As for the second-best compensation plan, where
the store manager’s incentives must be taken into
consideration, the firm’s inventory decision becomes

max
Ī

rE S|Ī[ ] −W Ī
( ) − C Ī

( )
, (24)

where

W Ī
( )

≜ min
w

E w I, S( )
⃒⃒
eHo , e

H
m

[ ]

s.t. E w I, S( )
⃒⃒
eHo , e

H
m

[ ]
− c eHo , e

H
m

( )
≥U ,

E w I, S( )
⃒⃒
eHo , e

H
m

[ ]

− E w I,S( )
⃒⃒
eo, em

[ ] ≥ c eHo , e
H
m

( )

− c eo, em( ) for all eo, em( ),
0 ≤ w i, s( ) ≤ w̄ for all i, s( ),

is the optimal value functionwhen (eHo , eHm) is the target
effort level.

Proposition 12.
a. Under the assumption that (eHo , eHm) is the target effort

level and f and g satisfy the MLRP, we have d
dĪ W(Ī) < 0 for

all Ī. That is, an increase in Ī leads to a decrease in the
expected payout to the store manager.
b. The firm’s optimal inventory level, by accounting for the

multitasking store manager problem, is higher than that in the
newsvendor problem, which helps the firm achieve a lower
expected payment to the store manager than otherwise.

The intuition behind Proposition 12(a) is as follows.
Because the firm is more likely to pay a bonus if the
inventory is cleared (as long as sales are greater than im),
increasing inventory reduces the chance of inventory
clearing and thus the chance of paying out the bonus.
Proposition 12(b) entails optimizing the initial in-

ventory level Ī. Let I∗ be the optimal inventory choice
in (24). The first-order condition of (24) yields the
necessary optimality condition for I∗:

r
d
dĪ

E S|I∗[ ] − d
dĪ

W I∗( ) & C′ I∗( )
. (25)

In light of (24) and (25) and because d
dĪ W(I∗) < 0 (by

Proposition 12) and C is a convex increasing function,
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we can conclude that I∗ > INV . In otherwords, the firm
overinvests in inventory as compared with the clas-
sical newsvendor setting without agency issues. This
result echoes the view of Dai and Jerath (2013, 2019)
that a higher inventory level mitigates the possibility
of demand censoring and hence benefits the firm by
reducing the complications in contract design.

10. Conclusion
In this paper, we have examined incentive issues at
the intersection of operations and marketing. We
show that the censoring of marketing outcomes (i.e.,
demand censoring) gives rise to a vexing incentive
issue of both ex ante and ex post moral hazard.
Addressing ex ante moral hazard alone leads to an
optimal compensation plan that does not overcome
the ex post issue. Only by providing for an additional
signal of unsatisfied demand (e.g., via a waiting list)
can we construct a compensation plan that both is
optimal and resolves the ex ante and ex post moral
hazard issues.

Taken together, our research provides a compelling
narrative linking customer and employee behavior in
the retail setting. Because of its inability to monitor
customer intentions (i.e., not observing all of de-
mand), for the firm to design intuitive compensation
schemes, it has to monitor employee intentions (i.e.,
their conscientiousness in sales and operational ac-
tivities or in accurately representing the level of in-
ventory in the store). In effect, an arm’s-length com-
pany cannot stop an employee from using its lack of
understanding of customer demand to benefit em-
ployee compensation. Employees incur a rent from
the company’s lack of visibility over customers. Only
additional information about customer intentions
removes this rent-seeking opportunity.

Our novel methodology (i.e., the bang-bang opti-
mal control approach) transcends the limitations of
classical solution approaches in contract theory and is
applicable to a broad set of incentive design prob-
lems. On the application side, we hope that our work
will inspire future research into this immensely ex-
citing venue. For example, instead of having a single
manager in charge of both operations and marketing,
one could imagine two managers, each responsible
for one of the tasks. The nature of the relationship
between these two managers, and their compensa-
tion plans, should also include aspects of customer
demand and behavior. Another scenario involves a
store manager who has operational responsibilities
not only for execution (i.e., maintaining inventory) but
also for making operational decisions, such as inven-
tory stocking levels (see, e.g., Sen and Alp 2020).
Stockouts—and the associated incentive complications—
will be likely even more prevalent in a decentralized
supply chain because of double marginalization.

An interesting research question would be whether
agency issues make optimal order quantities more or
less conservative.
Outside of the retail sector, numerous settings in-

volve multitasking between operations and market-
ing activities. In a global health setting, for example,
private agencies are often engaged in delivering and
administering vaccines to children residing in some of
the hardest-to-reach places in the world. The success
of their work depends on not just effective campaigns
to raise public awareness of the importance of vac-
cination (marketing), but also delicately managing a
cold chain system essential for the storage and trans-
portation of vaccines from freezer to freezer (operations).
Our paper has implications for incentive design prob-
lems in those settings.
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Endnotes
1Among the main sources of the discrepancy of recorded inventory
and available inventory are shrinkage and misplacement (Ton and
Raman 2004, Atalı et al. 2009). Beck and Peacock (2009) estimate that
retailers around the globe suffer a $232 billion annual loss from in-
ventory shrinkage.
2The multitasking literature (e.g., Holmstrom and Milgrom 1991,
Feltham and Xie 1994, Dewatripont et al. 1999) focuses on deriving
optimal parameters of linear compensation schemes, without estab-
lishing their optimality.
3The operations management and accounting literature (e.g., Chao
et al. 2009; Baiman et al. 2010; Krishnan and Winter 2012, section 8.1;
Nikoofal and Gümüş 2018) has studied similar settings where the
outcome of a product is determined by the weakest of its several
components, such as demand and inventory in our setting.
4Consistent with most of the moral hazard literature, we use a
constant support for both demand and inventory outcomes. If either
support moves with effort, the well-knownMirrlees argument applies:
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the firm can detect, with a positive likelihood, that the store manager
has deviated from the desired action (Mirrlees 1999).
5The compactness condition of - is not overly restrictive. If the
original space of signals is unbounded, for instance, a transformation
of the signal could make the signal space compact. For instance,
tasking the transformation ex

1+ex of the original signal x, in each di-
mension, can achieve the desired goal.
6This assumes that the function ∑m

i&1 ωiRi(!x ) has zero mass at the
cutoff t. If positive mass exists at the cutoff, a lottery with payouts on
zero and w̄ can characterize an optimal contract. We assume zero
mass at the cutoff to avoid this additional complication.
7Observe that BNSO can be empty under this definition when the
function s∗ only takes values in (Ī, Q̄], in which case is & Ī, which is not
optimal. For this reason, in figures such as Figure 1(a), we restrict the
vertical axis to be between zero and Ī, as opposed to zero and Q̄.
8We say “strictly” here because we require strict improvement in
both the inventory and sales outcomes. Note that allowing i′ & i′′ or
s′ & s′′ in the definition of joint monotonicity is a case that can be
handled by one of the two earlier definitions of monotonicity.
9 It is worth noting that the nonmonotonicity issue disappears if
demand is fully observed.We explore this issue in SectionOA.4 of the
online appendix, where we also explore the deadweight loss due to
demand censoring.
10 In Section OA.5 of the online appendix, we additionally explore
nonmonotone approximations of mast-and-sail compensation plans
for the purpose of examining what aspects of the mast-and-sail
structure drive optimality. There we show via extensive numerical
experiments that there is little optimality loss by replacing s∗ by a linear
function. By contrast, removing the mast can have a significant impact.
11We restrict attention to nonnegative κ1 and κ2 to ensure that the
triangular sail is described by a downward-sloping line and the 45◦

line. Recall that the function s∗ in mast-and-sail compensation plans
was downward sloping.Moreover, an upward-sloping triangular sail
itself is nonmonotone, despite its simplicity, and thus is susceptible to
the ex post moral hazard of hiding inventory. For these reasons, we
restrict attention to nonnegative κ1 and κ2.
12We thank an anonymous reviewer for suggesting this direction of
analysis to tackle ex post moral hazard.
13 In fact, our analysis allows forΘ to be defined by a general function
of Γ, Q, and I that satisfies sufficient monotonicity properties. We
study the linear version because of its intuitive nature.
14Recall that it is possible in theory for is & Ī, and hence, the region BLS

need not cross the 45◦ line. In other words, ,∗(i) ∈ (Ī, Q̄] for all i. We
ignore this degenerate case because here the store manager does not
get a bonus even when Ī is sold, which cannot be optimal because it
does not implement high efforts.
15Again, this assumes that the function ∑m

i&1 ωiRi(!x ) has zero mass at
the cutoff t.
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