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Abstract

Distributing scarce resources such as COVID-19 vaccines is often a highly time-sensitive and

mission-critical operation. Our research was prompted by a significant obstacle that the U.S. and

other nations encountered during the early months of the COVID-19 vaccination campaign: most

COVID-19 vaccines require two doses given three or four weeks apart. Given the severely limited

supply and mounting pressure on many countries to reduce hospitalizations and mortality, how to

effectively roll out two-dose vaccines was a critical policy decision. In this paper, we first model and

analyze inventory dynamics of the rollout process under three rollout strategies: (1) holding back

second doses, (2) releasing second doses, and (3) stretching the lead time between doses. Then we

develop an SEIR model that incorporates COVID-19 asymptomatic and symptomatic infections

to evaluate these strategies in terms of infections, hospitalizations, and mortality.

Among our findings, we show releasing second doses reduces infections but creates uneven vac-

cination patterns. In addition, to ensure second doses are given on time without holding back

inventory, strictly less than half of the supply can be allocated to first-dose appointments. Stretch-

ing the between-dose lead time flattens the infection curve and reduces both hospitalizations and

mortality compared with the strategy of releasing second doses. We also consider an alternative

single-dose vaccine with lower efficacy and show the vaccine can be more effective than its two-dose

counterparts in reducing infections and mortality. We conduct extensive sensitivity analyses related

to age composition, risk-based prioritization, supply disruptions, and disease transmissibility. Our

paper provides important implications for policymakers to develop effective vaccine rollout strate-

gies in developed and developing countries alike. More broadly, our paper sheds light on how to

develop effective operations strategies for distributing time-sensitive resources in times of crisis.

Keywords: COVID-19 vaccine rollout, vaccine inventory, public health operations, SEIR model,

healthcare operations management
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1. Introduction

This research was motivated by a major challenge that COVID-19 vaccination campaigns faced

during the first half of 2021. One year after the onset of the COVID-19 pandemic, global efforts

aimed at ending the pandemic had evolved from developing vaccines at a record pace to rapidly

putting doses into people’s arms. Experts predicted that manufacturing or deployment delays will

cause the benefit of vaccination to “decline substantially” (Paltiel et al. 2021, p. 42). Adding to

the urgency of distributing vaccines, SARS-CoV-2, the virus underlying the disease, continued to

rapidly spread and mutate. Racing against time, the mass vaccination effort was arguably “the

biggest logistics challenge in history” (Arnold 2020, p. 36), requiring vaccine manufacturers to

produce billions of doses of newly developed vaccines in a matter of months.

Yet, expanding vaccine supply was challenging for two reasons. First, the vaccine production rate

is limited by physical infrastructure, requisite raw materials (e.g., enzymes for converting DNA

to mRNA for both the Pfizer and Moderna vaccines),1 and packaging materials (e.g., glass vials

and rubber stoppers). Second, the production yield can be uncertain. For example, uncertainty

in AstraZeneca’s vaccine production process, which requires the growth of cells inside bioreactors,

caused major delays in its delivery to the E.U. in January 2021. In addition, developed countries

have locked up much of the vaccine supply through 2023, leaving developing countries struggling

with stringent supply constraints (Hopkins 2021). Specifically, the vaccine shortage was particularly

salient in Africa, which accounts for 18% of the world’s population but has only received 2% of

global COVID-19 vaccine supply by June 2021 (Muhumuza and Mutsaka 2021).

In addition to limited supply, the authorization of three major COVID-19 vaccines (AstraZeneca,

Moderna, and Pfizer) was for two-dose regimens, creating unprecedented timing and inventory

planning issues. For example, the Pfizer vaccine required two doses with a recommended three-

week interval between them.2 To ensure adherence to the two-dose regimen, the U.S. initially (from

December 2020) followed a “hold-back policy” for each dose offered to a first-time recipient; that

is, one extra dose is held in reserve until the recipient returns for the second dose (Gottlieb 2021).

The hold-back policy can ensure that two doses are reserved for each recipient. However, when

facing severely limited vaccine supplies and rapidly rising COVID-19 case counts, the hold-back

policy can cause a delay for other individuals to receive their first doses. To accelerate the vac-

cination process in order to reach herd immunity sooner, the U.S. and the U.K. had proposed

1 Throughout the paper, for brevity, we refer to the Pfizer/BioNTech vaccine as the Pfizer vaccine. Similarly, we refer
to the AstraZeneca/Oxford vaccine as the AstraZeneca vaccine.

2 The U.S. Food and Drug Administration (FDA) has only authorized the use of two specified doses of
both Pfizer and Moderna vaccines at specified intervals—a three-week interval for the Pfizer vaccine and
a four-week interval for the Moderna vaccine. See https://www.fda.gov/news-events/press-announcements/

fda-statement-following-authorized-dosing-schedules-covid-19-vaccines for details.

https://www.fda.gov/news-events/press-announcements/fda-statement-following-authorized-dosing-schedules-covid-19-vaccines
https://www.fda.gov/news-events/press-announcements/fda-statement-following-authorized-dosing-schedules-covid-19-vaccines
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unconventional solutions intended to address the logistical requirement of offering two doses of the

COVID-19 vaccine for each recipient.

In the U.S., then-President-elect Joe Biden proposed on January 8, 2021, that he would order

a switch from the hold-back policy to a stock “release policy,” which means that (1) no vaccine

inventory would be held for future vaccine recipients who return to receive their second doses and

(2) all vaccine inventory is used as either first doses for new recipients or second doses for returning

recipients (O’Donnell and Spalding 2021). Unlike the hold-back policy that can guarantee that the

two-dose regimen is administered according to the recommended time interval, the release policy

can increase access of the first doses to more recipients. However, without dedicated inventory for

the second doses, shortages may arise when vaccine supply remains limited.

Across the Atlantic, the U.K. government announced a related and somewhat controversial

policy on December 30, 2020. Instead of administering two vaccine doses three weeks apart as

recommended (in the case of the Pfizer vaccine), the lead time would be stretched to 12 weeks.

Logistically, this “stretching policy” defers the required demand from second-dose recipients and

frees up more stock to cover first-dose recipients. Hence, the stretching policy generates an effect

similar to that of the release policy: It can expand the access to the first dose for more recipients,

but it will delay the administration of the second dose, especially when the vaccine supply is limited.

Delaying the time for recipients to receive their required second doses can increase the chance of

infection for these recipients during the delay.

Both the U.S. and U.K. policies aimed to maximize the number of people developing partial

immunity. As The Guardian reported, prioritizing the first dose “would mean each vulnerable

person who has received the vaccine would be afforded less protection, [while] the number of people

given at least some protection would double” (Rawlinson 2020). Because clinical data suggest the

marginal gain in protection of the first dose is significantly larger than that of the second dose,

such a trade-off appeared to increase overall protection to the population.

On the other hand, both policies were controversial for myriad reasons (Mancini and Gross

2021). In particular, the issue of whether to hold back second doses garnered significant public

attention in the U.S.: Some experts are in favor of holding back second doses, citing the risk of

insufficient protection of single-dose inoculations in times of potential disruptions (Mak and Tang

2021); others believe the supply rate of COVID-19 vaccines is expected to grow over time, at least

in the U.S., so holding back second doses is unnecessary (Dai and Yadav 2021). These diverging

views motivate us to model and compare the release and stretching policies against the benchmark

hold-back policy. Essentially, both the release and stretching policies are intended to address the

challenge of limited vaccine supply through an operational approach: both policies call for shifts

in inventory-control policies for vaccine stocks. Therefore, debates over these policies must involve
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the operations management perspective, which has been largely absent in the public discourse, in

addition to the clinical, public health, and political perspectives. To facilitate such discussions, we

develop a modeling framework to examine and compare these policies.

Due to limited vaccine supply (especially in many developing countries), allocating vaccines has

become a time-sensitive and mission-critical issue. In our context, these rollout policies of a vaccine

with a two-dose requirement involve the following trade-offs: (i) The hold-back policy can secure

two doses for fewer recipients with high efficacy, yet it delays other recipients’ access to the first

doses (which can give them some immunity); (ii) the release policy can increase access to the

first doses, but it may cause shortages or delays for administering the required second doses for

returning recipients; and (iii) the stretching policy can also vaccinate more recipients, but it can

cause even longer delays for the recipients receiving their required second doses.

Critically, through modeling the rollout process under the alternative policies, we point out

that the popular belief that “the number of people vaccinated would double” (Rawlinson 2020) is

incorrect. In particular, the clinical requirement to administer the second dose imposes an inter-

temporal constraint on the rollout problem: As more first doses are given early on, supplies in later

periods become more tightly constrained.

In light of these trade-offs, the limited supply of vaccines, and how the required second dose can

boost immunity against COVID-19, the implications of these policies are not immediately clear,

especially when the timing for individuals to receive the first and second doses would vary for

each policy. These observations motivate us to develop a dynamic model to examine the following

questions arising from the rollout process of a COVID-19 vaccine with a two-dose requirement:

(i) Given the production rate of vaccines (constant or linearly increasing), what are the cumula-

tive inoculation rates for the first and second doses under the hold-back policy, the release policy,

and the stretching policy?

(ii) Relative to the hold-back policy, will the release and stretching policies generate higher

cumulative inoculation rates?

(iii) In light of an age-stratified SEIR (susceptible, exposed, infectious, recovered) model that

predicts the infection process under different vaccination policies, which policy is the most effective

in reducing infections, hospitalizations, and mortality?

(iv) How would a single-dose vaccine with a lower efficacy (e.g., the Johnson & Johnson COVID-

19 vaccine) perform relative to its two-dose counterparts?

As an initial attempt to examine the above questions arising from the two-dose regimen of all

approved vaccines and the limited supply of vaccines, we develop a dynamic model by examining

the first- and second-dose inoculation rates of a single vaccine under all three policies (hold-back,
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release, and stretching). We also extend our model to capture the case of rolling out a new single-

dose vaccine with a lower efficacy.

Through analytical comparisons, we find that under a constant or linearly increasing vaccine

production rate, both release and stretching policies generate a higher cumulative vaccination

population than the hold-back policy. Somewhat counter-intuitively, we show that even if one

intends to release all second doses, no more than half of the available doses can be allocated to

first-dose appointments, in order to avoid any delays in administering those required second doses

for returning recipients, no matter how quickly supply grows over time.

One can view the single-dose regimen as an extreme case of a stretching policy in which the

timing of the required second dose is extended to the infinite future. Using this logic, we show that

the single-dose regimen can generate a higher cumulative vaccinated population than the hold-back

policy and the release policy.

We also develop a compartmental SEIR model that incorporates COVID-19 asymptomatic and

symptomatic infections in a population that consists of high- and low-risk groups. Our SIER model

captures the evolution of the COVID-19 pandemic among these two groups who receive zero, one

or two doses of vaccine under different rollout strategies over time. We also calibrate our parameter

values using the latest vaccine effectiveness studies (e.g., Haas et al. 2021). Our simulation study of

our SEIR model reveals that both release and stretching policies can generate lower disease trans-

missions than the hold-back policy; however, these two policies create uneven vaccination patterns.

Stretching the between-dose lead time flattens the infection curve, and reduces hospitalization and

mortality (more than under the strategy of releasing second doses). We also consider an alternative

single-dose vaccine (e.g., J&J vaccine) with a lower overall efficacy and show that it can be more

effective than its two-dose counterparts in reducing infections, hospitalizations, and deaths. We

conduct extensive sensitivity analyses related to age composition, risk-based prioritization, supply

disruptions, and the basic reproduction number R0.

Although our work was motivated by the initial months of COVID-19 vaccination efforts in

the E.U., U.K., and U.S., it has broader policy implications. Developing countries are set to face

limited vaccine supply as developed countries have locked up most of the vaccine supply up to 2023

(Hopkins 2021). This is the latest episode of the longstanding ineffectiveness of global health supply

chains that calls for better operations management practices (Kraiselburd and Yadav 2013, Gallien

et al. 2017). Our results can help policymakers in various developing countries understand the pros

and cons of different rollout policies. Furthermore, our modeling framework and our SEIR model

can be applied to a variety of vaccination environments (when relevant data become available),

including different variants and different vaccines with varying administration regimens and levels

of efficacy.
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The remainder of the paper is organized as follows. We review the relevant literature in Section 2.

Section 3 describes our model and the three rollout policies. Using the hold-back policy as a

benchmark, we examine the implications of the release policy in Section 4 and the stretching policy

in Section 5. In Section 6, we examine an alternative single-dose vaccine. In Section 7, we develop

an SEIR model to evaluate the three policies and the single-dose regimen. We conclude our paper

in Section 8. All proofs are provided in Section OA1 of the online appendix.

2. Literature Review

Vaccine distribution is a vibrant line of research that has attracted substantial interest from the

healthcare operations management community. Most of this stream of literature focuses on the

influenza vaccine (for exceptions, see, e.g., Cummings et al. 2020; Hall et al. 2008). Whereas several

papers in this literature (e.g., Arifoğlu et al. 2012; Arifoğlu and Tang 2021; Chick et al. 2008, 2016;

Yamin and Gavious 2013) study governments’ vaccine contracting, procurement, and subsidies

decisions, others (e.g., Cho and Tang 2013; Dai et al. 2016) examine optimal contract design

between vaccine manufacturers and healthcare providers who administer vaccines. Duijzer et al.

(2018) use a susceptible-infectious-recovered (SIR) model to study the critical vaccine coverage

leading to herd effect for a pandemic and consider the optimal allocation of vaccine doses across

different populations. Unlike this literature, which focuses primarily on distributing single-dose

vaccines, we study a unique problem of distributing a two-dose vaccine during a pandemic in which

whether to hold back second doses becomes a consequential national policy. In doing so, our paper

speaks to a number of related public health papers on various rollout strategies, including, for

example, Paltiel et al. (2021a, 2021b), Tuite et al. (2021), and Voysey et al. (2021).

Another related stream of literature studies inventory management—a classical theme of the

operations research and management science community. This literature emerges from the semi-

nal work by Arrow et al. (1951), Dvoretzky et al. (1953), and Scarf (1960) and has become the

foundation of much of today’s work in manufacturing and supply chain operations (Porteus 1990;

Song et al. 2020). Despite the immense breadth and depth of the extant inventory literature, our

paper represents a first attempt to address a novel time-sensitive resource allocation problem in

which each customer requires exactly two units of the product at a specified timing. In addition,

unlike the literature that focuses on a single organization’s decision, we examine a national policy

with public health implications. The only other work in the inventory literature that shares similar

characteristics, to the best of our knowledge, is the paper by Natarajan and Swaminathan (2017),

which considers the dynamic allocation of inventory of treatment drugs among patients with dif-

ferent (and evolving) health states. Compared with this work, which considers patients’ health

conditions in each state to evolve exogenously over time, our vaccine rollout problem involves the

evolution of a pandemic that is governed by an epidemiology model.



8 Mak, Dai, and Tang: Managing Two-Dose COVID-19 Vaccine Rollouts with Limited Supply

Our paper also contributes to the rapidly growing operations management literature that

addresses the COVID-19 pandemic. For example, Kaplan (2020) documents a number of basic

mathematical models to support local-level COVID-19 decisions ranging from event crowd control

to hospital capacity planning. As another example, Chen et al. (2020) use mobility data around

nursing homes to establish the relationship between cross-facility staff movement and COVID-19

infections. Shumsky et al. (2021) study a healthcare provider’s COVID-19 vaccine inventory man-

agement problem. We enrich this literature by studying a novel problem relevant to how health

policymakers roll out COVID-19 vaccines—the endgame of the COVID-19 pandemic—and our

findings have important implications for vaccination policies in future pandemics.

3. Modeling a Two-Dose Vaccine Rollout Process

In this section, we present a parsimonious model of the vaccine rollout process in the spirit of scratch

models as articulated by Kaplan (2020). To examine the implications of the three aforementioned

policies—including (1) holding back second doses, (2) releasing second doses, and (3) stretching

the between-dose lead time—our model focuses on the dynamic first- and second-dose inoculation

rates over time by taking into consideration the limited availability of vaccine supply. Specifically,

our model involves the following elements.

Vaccine supply rate y(t). Consider a time horizon with a length of T (e.g., a year) during which

the vaccine is rolled out. For any t∈ [0, T ], let y(t) be the deterministic supply rate of vaccine doses

available at t;3 y(t) is exogenously determined by the rate of manufacturing, quality and safety

checks, and transportation. We assume y(t) is (weakly) increasing in t; that is, the supply ramps

up over time. Let Y (t) be the cumulative supply up to time t, where Y (t) =
∫ t

0
y(τ)dτ .

Vaccination rate vi(t) and cumulative vaccination Vi(t). We denote by v1(t) and v2(t) the

instantaneous rates of the first- and second-dose inoculations at time t, respectively. Thus, the

cumulative vaccinations completed by time t, denoted by Vi(t), satisfies

Vi(t) =

∫ t

0

vi(τ)dτ for i∈ {1,2}.

The cumulative vaccinations V1(t) (and V2(t)) can be interpreted as the partially (and fully) pro-

tected populations who have received the first dose (and the second dose) by time t∈ [0, T ].

Lead time L. A parameter of key concern is the lead time L; i.e., the recommended time interval

between the two doses of the same vaccine. The lead time L depends on the specific vaccine and

the vaccination policy. In the U.S., Pfizer recommends L = 3 weeks and Moderna recommends

3 Besides tractability, the deterministic production rate is a reasonable assumption for the following reason: The
production process for the Pfizer and the Moderna vaccines is relatively stable, because the process involves converting
DNA into mRNA rather than growing cells in a bioreactor (Boseley 2021).
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L= 4. For simplicity of our analysis, we assume the second dose must be received exactly L periods

after the first dose.4 However, in the U.K., L= 12 weeks for the AstraZeneca, Moderna, and Pfizer

vaccines under the dose-stretching policy.

Vaccination rollout policy (v1(.), v2(.),L). As we will explain later, the hold-back, release, and

stretching policies correspond to a particular choice of functions v1(·), v2(·) and the lead time L.

In general, a feasible policy (v1(.), v2(.),L) must satisfy the following constraints at any time t:5

V1(t) +V2(t)≤ Y (t) for t∈ [0, T ] (1)

V2(t) = 0 for t∈ [0,L) (2)

V2(t)≤ V1(t−L) for t∈ [L,T ]. (3)

Due to limited vaccine supply, constraint (1) suggests cumulative first- and second-dose vaccinations

offered are bounded by the cumulative supply at every instant t. In addition, to comply with the

two-dose regimen requirement, constraints (2) and (3) indicate second doses cannot be offered until

L time units have elapsed after first-dose inoculations. (If there is sufficient supply of vaccine at

all times, then (3) will hold as equality; i.e., V2(t) = V1(t−L).)

Cumulative protection Pi(t). Building on the (partially and fully) protected population sizes

(V1(·) and V2(·)), we now define the cumulative partial protection rate (due to the first dose) P1(t)

and full protection rate (due to both doses) P2(t) up to time t (in person-weeks):

Pi(t) =

∫ t

0

Vi(τ)dτ for i= 1,2.

The cumulative protection levels keep track of the number of people protected by vaccination and

the duration over which protection has been developed. Hence, this measure reflects the amount

of protection offered to the population as a whole. To elaborate, consider the following example.

Example 1. Consider two hypothetical scenarios: (i) One million people are given the first dose

instantaneously at time t= 0 and none thereafter; and (ii) 50,000 people are given the first dose per

day at a continuous rate over 20 days and none thereafter. In both cases, the cumulative first-dose

4 The recommended lead time L= 21 days for the Pfizer vaccine, and CDC guidelines in 2021 allow for a grace period
of 4 days earlier than the recommended date, see https://www.cdc.gov/vaccines/covid-19/info-by-product/

clinical-considerations.html for details. In February 2022, the CDC modified its recommended lead time
to 8 weeks for 12- to 64-year-olds, particularly males aged 12 to 39 (https://khn.org/morning-breakout/
cdc-advising-some-to-wait-8-weeks-between-doses-of-mrna-vaccines/). Despite these new guidelines, our
modeling framework and approach are applicable to any lead time L and any number of doses.

5 To isolate the effect of different vaccine rollout policies, we do not model the issue of setting up a physical infras-
tructure (i.e., location and the size of vaccination sites) or mobilizing personnel (controlled by FEMA, state/county
governments, or local healthcare providers) to administer vaccines. Instead, we abstract away those issues and assume
all policies will be operated under the same environment.

https://www.cdc.gov/vaccines/covid-19/info-by-product/clinical-considerations.html
https://www.cdc.gov/vaccines/covid-19/info-by-product/clinical-considerations.html
https://khn.org/morning-breakout/cdc-advising-some-to-wait-8-weeks-between-doses-of-mrna-vaccines/
https://khn.org/morning-breakout/cdc-advising-some-to-wait-8-weeks-between-doses-of-mrna-vaccines/
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vaccinated population sizes by Day 20 are the same at V1(t) = 1 million when t= 20. However, the

cumulative protection levels are different: P1(t) is equal to 20 million person-days in scenario (i),

and is equal to 10 million person-days in scenario (ii). Thus, the amount of protection in scenario

(i) is double that under scenario (ii).

The functions y(t), Y (t), vi(t), and Vi(t) are meaningfully defined only for t ∈ [0, T ]; for nota-

tional brevity, we adopt the convention that their values equal zero when t < 0. In addition to

these measures, we further consider a broader class of performance metrics, including symptomatic

infections, hospitalizations, and mortality, based on an SEIR model in Section 7 and Section OA2.

This involves a system of differential equations that utilizes vi(t) and Vi(t) for i= 1,2.

3.1. Stock Hold-Back Policy (vh1 (t), vh2 (t))

As explained in Section 1, the U.S. government followed the manufacturer’s recommended lead time

of L weeks by adopting the hold-back policy as follows. Specifically, each facility only administers

half of the vaccine stock received for first doses, and holds back the other half for L weeks to ensure

recipients will have guaranteed stock when they return for the second dose. By considering the

supply rate y(t), the hold-back policy (vh1 (t), vh2 (t)) stipulates the following6:

vh1 (t) =
1

2
y(t) and vh2 (t) = vh1 (t−L).

This policy ensures constraints (1)–(3) are satisfied at all time.

We now represent the cumulative protection functions P h
i (t) using the external supply function

Y (t). First, by the definition of V h
i (t), we have

V h
1 (t) =

1

2
Y (t) and V h

2 (t) =
1

2
Y (t−L).

Then, the amount of protection by time t can be given by

P h
1 (t) =

1

2

∫ t

0

Y (τ)dτ and P h
2 (t) =

1

2

∫ t−L

0

Y (τ)dτ.

3.2. Stock-Release Policy (vr1(t), vr2(t))

Under the stock-release policy, vaccine stock is no longer put on reserve for second doses.7 The

intention of the release policy is to maximize the rate of first-dose inoculations to accelerate the

build-up of partial protection. Using our notation, the release policy stipulates that v1(t) + v2(t) =

y(t), such that all available stock is offered (as first or second doses) without delay. However, if

the supply rate does not increase fast enough over time, then increasing the number of first-dose

recipients earlier would constrain the number of first-dose recipients later.

6 We use the superscripts h, r, and s to denote the hold-back, release, and stretching policies, respectively.

7 Though small amounts of smoothing stock will still be kept in reality, we ignore this fact in our model for simplicity.
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To illustrate different rollout dynamics under the hold-back and the release policies with limited

vaccine supply, let us consider a simple example.

Example 2. Consider a constant supply rate of 100 doses per day (i.e., y(t) = 100) and a lead

time of L=21 days (i.e., 3 weeks between dose time interval for the Pfizer vaccine).

(i) Hold-back policy. Under the hold-back policy, 50 first doses will be offered per day, whereas

the remaining 50 doses of supply will be reserved for the same 50 recipients who return 21 days

later for their second doses. This pattern repeats every day.

(ii) Release policy . Under the release policy, from Day 1 to Day 21, 100 doses per day (i.e., the

entire supply for each day) are administered to 100 people as their first doses. However, on Day

22, those 100 recipients who received the first doses on Day 1 are now due for their second doses.

To adhere to the required dosage schedule, it is necessary to allocate all 100 doses (i.e., the entire

supply) on Day 22 for those 100 returning second-dose recipients. In doing so, the provider has no

vaccine to offer to any first-dose recipient on Day 22. This situation will continue until Day 43,

when there are no more recipients who are due for the second dose (because no first-dose recipient

received a first dose from Day 22 to Day 42). Therefore, on Day 43, all 100 doses will be released to

100 first-dose recipients, and the pattern repeats as on Day 1. Overall, this “alternating pattern”

repeats in 42-day (i.e., twice of the lead time L= 21 days) intervals.8

We now define the stock-release policy (vr1(t), vr2(t)) more formally. Initially, all available supply

is released as first-dose vaccination over t∈ [0,L) so that (vr1(t), vr2(t)) satisfy

vr1(t) = y(t) and vr2(t) = 0.

When t≥ L, the available supply will be split between first- and second-dose appointments. Let

Br(t) = V r
1 (t−L)−V r

2 (t) denote the amount of backlog by time t; that is, the difference between

the number of people who have received their first doses L weeks ago and the number of people

who have received their second doses. For clinical reasons, the backlog Br(t) should be minimized.

Therefore, the rate of second doses offered should match as closely as possible the rate of first doses

completed L periods ago. To capture this preference, the release policy (vr1(t), vr2(t)) for t ∈ [L,T ]

must satisfy:

vr1(t) = y(t)− vr2(t)

vr2(t) =

{
min{vr1(t−L), y(t)} if Br(t) = 0

y(t) otherwise.

8 This alternating pattern has been observed in various parts of the world. For example, in early February 2021,
COVID-19 vaccine sites in Los Angeles County postponed first-dose appointments and only administered second
doses to returning recipients; see http://cbsloc.al/3bo5uiS for details.

http://cbsloc.al/3bo5uiS
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That is, when the backlog of second-dose appointments exists (i.e., Br(t) > 0, or, equivalently,

V r
2 (t) < V r

1 (t− L)), the entire supply will be allocated for the second dose. In the absence of a

backlog, the second-dose inoculation rate follows the first-dose rate lagged by lead time L, up to

the available capacity.

The backlog of second-dose appointments Br(t) will build up if the rate of recipients due for

second doses, v1(t−L), exceeds the available supply, y(t). When the supply rate ramps up slowly,

most (or all) of the available supply might be allocated for second doses in order to avoid backlog.

This scenario is not desirable for the purpose of steadily increasing the protected population.

The next result evaluates the fraction of supply that can be allocated for first-dose appointments.

In preparation, let us define β as the minimum fraction of available supply that is allocated for

first-dose appointments at all times, i.e., β = mint≥L v1(t)/y(t).

Lemma 1. No backlogs exist if and only if β satisfies

(1−β) · y(L+ t)≥


y(t) for all t∈ [0,L)

y(t)− y(t−L) for all t∈ [L,2L)

y(t)−β · y(t−L) for all t∈ [2L,T ].

Lemma 1 suggests that, to ensure a minimum fraction (β) of supply to be allocated for first

doses (in order to continuously build up the protected population) at all times, the supply rate

y(t) must grow sufficiently quickly. The first two conditions of Lemma 1 hold when (1− β), the

proportion of supplies made available for second doses, is high and/or supply accelerates quickly in

the initial weeks (especially during the first L periods). To illustrate the third condition, consider

the case in which β = 1
2
; that is, when at least half of the available supply is to be used on first

doses. In that case, the third condition holds if y(t) is convex.

If vaccine supply does not accelerate sufficiently quickly, the rate of first-dose inoculations cannot

be sustained. To avoid backlogs for second-dose inoculations, first-dose offerings must be temporar-

ily reduced. As we show in the next section, this reduction gives rise to an alternating pattern

between offering first and second doses (see Example 2).

3.3. Dose-Stretching Policy (vs1(t), vs2(t))

The dose-stretching policy is intended to optimize the use of vaccine supply and maximize first-

dose inoculations. We define the dose-stretching policy (vs1(t), vs2(t)) by focusing on the effect of

stretching the lead time from the recommended L to Ls =mL, where m≥ 1 is an integer.9 Using

this definition, we may view the stretching policy as a generalization of the stock-release policy

with a longer lead time Ls =mL, where m> 1. Thus, we omit the analysis of the policy for brevity.

9 In the case in which m= 1, the stretching policy reduces to the release policy. For practicality of implementation,
we restrict m to being integer-valued. For example, the U.K.’s dose-stretching policy increases the lead time from
L= 3 weeks to Ls = 12 weeks, that is, m= 4.
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4. Is Releasing Second Doses the Right Move?

We now compare the performance between the hold-back policy (vh1 (t), vh2 (t)) and release policy

(vr1(t), vr2(t)). To do so, we first derive the cumulative vaccinated population Vi(t) and the cumula-

tive protection Pi(t) associated with these policies, by considering the case in which the supply rate

grows linearly over time.10 In particular, we assume, without loss of generality, that y(t) = 1 +αt,

where α≥ 0 and the initial supply rate is normalized to one (i.e., y(0) = 1).

4.1. Benchmark: Hold-Back Policy

By using the supply rate y(t) = 1 + αt and the hold-back policy (vh1 (t), vh2 (t)) as defined in Sec-

tion 3.1, we derive the corresponding performance measures V h
i (t) and P h

i (t) for i= 1,2 below.

Lemma 2. Under the hold-back policy (vh1 (t), vh2 (t)) and a linear supply growth, the cumulative

vaccinations and protection evolve over time as follows:

V h
1 (t) =

t

2
+
α

4
t2 for t∈ [0, T ]

V h
2 (t) =

{
0 for t∈ [0,L)
1
2
(t−L) + α

4
(t−L)2 for t∈ [L,T ]

P h
1 (t) =

1

4
t2 +

α

12
t3 for t∈ [0, T ]

P h
2 (t) =

{
0 for t∈ [0,L)
1
4
(t−L)2 + α

12
(t−L)3 for t∈ [L,T ].

The measures characterized in Lemma 2 later serve as the benchmark for ensuing comparisons.

4.2. Implications of the Release Policy

Using the same approach as in Lemma 2, we can derive the expressions of the performance measures

V r
i (t) and P r

i (t) associated with the stock-release policy (vr1(t), vr2(t)) as defined in Section 3.2. We

omit the details for conciseness.

By considering the cumulative vaccinated population V r
i (t) associated with the release policy,

we can determine the backlog Br(t) as defined in Section 3.2, where Br(t) = V r
1 (t−L)−V r

2 (t). The

next result follows from Lemma 1 and highlights the conditions under which the backlog Br(t) = 0

so that a smooth rollout of first-dose appointments (without causing delays in administering the

second dose) can be guaranteed under the linear-supply-growth scenario y(t) = 1 +αt.

Proposition 1. Under a linearly growing supply, the stock-release policy (vr1(t), vr2(t)) can allo-

cate β fraction of supply to first-dose appointments without incurring backlogs for second-dose

appointments if and only if β ≤ 1
2
− 1

2(1+2αL)
.

10 For tractability, we consider the linear case. However, one can use the same approach to examine the case of a
non-linear production rate numerically.
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To avoid backlogs at any time t (i.e., Br(t) = V r
1 (t− L)− V r

2 (t) = 0 for any t) so that enough

second doses are available in stock for those who have received the first dose L weeks ago, Proposi-

tion 1 suggests the stock-release policy can never guarantee half of available supplies are allocated

to first-dose appointments (i.e., β < 0.5), no matter how quickly the supply rate grows (i.e., for

any value of α). The minimum guaranteed fraction available for first-dose appointments is, intu-

itively, increasing in α. (Furthermore, as part of the proof of Proposition 1 in the online appendix,

(OA2)-(OA3) suggest that when α approaches zero, that is, when supply grows slowly, first- and

second-dose appointments will have to be almost shut down in alternating periods of lead time

(L), in order to avoid backlogs.)

Next, through direct comparison between the performance measure associated with the hold-

back (i.e., V h
i (t) and P h

i (t) as stated in Lemma 2) and the release policies, we have the following

proposition.

Proposition 2. Under linear supply growth, the stock-release policy (vr1(t), vr2(t)) can generate

higher cumulative vaccinated populations than the stock hold-back policy (vh1 (t), vh2 (t)) by:

∆V r
1 (t), V r

1 (t)−V h
1 (t) =


α
2
nL2 + 1

2
(t− 2nL) + α

4
(t− 2nL)2 for t∈ [2nL, (2n+ 1)L)

α
2
nL2 + 1

2
L+ α

2
L2− 1

2
[t− (2n+ 1)L]

−α
4
[2(n+ 1)L− t]2 for t∈ [(2n+ 1)L, (2n+ 2)L)

∆V r
2 (t), V r

2 (t)−V h
2 (t) = ∆V r

1 (t−L).

Furthermore, over a full cycle [0,2nL), where n≥ 1, the stock-release policy achieves better cumu-

lative protection than the stock hold-back policy by

∆P r
1 (2nL), P r

1 (2nL)−P h
1 (2nL) =

n

2
L2 +

α

2
n(n+ 1)L3

∆P r
2 (2nL), P r

2 (2nL)−P h
2 (2nL) = ∆P r

1 ((2n− 1)L)

=

(
n− 1

2
+

1

4

)
L2 +

α

2
L3

(
n2− 5

6

)
.

From Proposition 2, we can verify that ∆V r
i (t)> 0 and ∆P r

i (2nL)> 0 for i= 1,2. Hence, the

net changes in cumulative inoculations as well as cumulative protection due to switching from the

stock hold-back policy (vh1 (t), vh2 (t)) to the stock-release policy (vr1(t), vr2(t)) are all strictly positive.

Therefore, releasing second doses accelerates the buildup of protection, as long as the supply rate

is (weakly) growing.

This improvement from releasing second doses, however, comes at the expense of potentially

uneven offering patterns that alternate between first and second doses (Proposition 1) and the

associated scheduling complexity, especially when the supply rate grows sluggishly. In practice,

without assurance that second doses are reserved, many healthcare providers struggle with the
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uncertainty of scheduling second-dose appointments. In the state of Maryland, as recently as in

February 2021, despite the Biden administration’s decision not to hold back second doses at the

federal level, Dennis Schrader, Acting Maryland Health Secretary, urged healthcare providers to

hold back second doses (Miller and Cohn 2021). In other words, the impact of the stock-release

policy on infection control is dampened by its complexity in implementation.

Proposition 2 reveals that the release policy dominates the hold-back policy. Will the stretching

policy create additional value over the release policy by extending the lead time? We analytically

examine this issue in the section that follows.

5. Will Stretching the Dose Time Interval Help?

We now examine the implication of the dose-stretching policy (vs1(t), vs2(t)). Recall from Section 3.3

that the stretching policy is essentially a stock-release policy with a longer lead time that has

Ls =mL, where m> 1. Hence, we can extend our analysis presented in Section 4.2 to determine

the corresponding performance measures V s
i (t) and P s

i (t) when Ls = mL with m > 1. We omit

the details to avoid repetition. In addition, through direct comparison between the performance

measure associated with the release (i.e., V r
i (t) and P r

i (t) as examined in Section 4.2) and the

stretching policies, we obtain the following result:

Proposition 3. Over a cycle [0,2mL), the dose-stretching policy Ls = mL with m > 1 can

increase the cumulative first-dose inoculations and reduce the second-dose inoculations over the

stock-release policy by

∆V s
1 (2mL), V s

1 (2mL)−V r
1 (2mL) =

α

2
L2m(m− 1)> 0

∆V s
2 (2mL), V s

2 (2mL)−V r
2 (2mL) =−3α

4
L2(m− 1)2 < 0.

In addition, the dose-stretching policy offers higher cumulative partial and lower full protection

than the stock-release policy by

∆P s
1 (2mL), P s

1 (2mL)−P r
1 (2mL) =

m(m− 1)L2

2
+α[2m3−m(m+ 1)]L3 > 0

∆P s
2 (2mL), P s

2 (2mL)−P r
2 (2mL) =−3(m− 1)2L2

4
− α(m− 1)(m2 + 1)L3

2
< 0.

Proposition 3 highlights the trade-off between prioritizing the first and second doses. Through

stretching the lead time (i.e., by increasing m), more supplies are made available for the first

dose; thus, the cumulative population having completed the first dose and the cumulative partial

protection both increase. However, deferring the second dose leads to lower levels of cumulative

second-dose completions and the level of full protection.
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To better explore the trade-off between first and second doses, let us consider the case when the

first and second doses lead to efficacy levels of 1−θ1 and 1−θ2, respectively, that is, the rate that an

otherwise unimmunized person being infected by COVID-19 drops from λ without vaccination to

θ1λ after the first dose, and θ2γ after the second.11 For notational brevity, let ζ = (θ2−θ1)/(1−θ1).

If the first dose provides most of the protection, we have ζ < 1 (e.g., for the case of Pfizer, where

the efficacy rates are 1− θ1 = 0.423 and 1− θ2 = 0.047 after the first and second doses, we have

ζ = 0.376/0.577 = 0.652). Then, the efficacy-weighted protection level P (t) measures the amount

of protection provided by the vaccination program weighted by the strength of protection:

P (t) = (1− θ1)λP1(t) + (θ1− θ2)λP2(t) = λ(1− θ1)(P1(t) + ζP2(t)). (4)

Proposition 4. Switching from the stock-release policy (vr1(t), vr2(t)) to the dose-stretching pol-

icy (Ls = mL) can increase the efficacy-weighted protection P (t) over the cycle [0,2mL] if ζ ≤
2m

3(m−1)
.

Proposition 4 suggests dose stretching (i.e., by increasing m) increases efficacy-weighted protection

P (t) as long as ζ is below the threshold value 2m
3(m−1)

. The threshold value drops as m increases,

indicating dose stretching becomes less favorable as m increases. Recall from Section 3.3 that

m= 4 under the stretching policy for the Pfizer vaccine when the U.K. government stretched the

lead time from three weeks to 12. The threshold value in Proposition 4 is 2m
3(m−1)

= 0.89 when

m= 4. Combine this observation with the fact that ζ = 0.652 for the Pfizer vaccine, the condition

ζ ≤ 2m
3(m−1)

is satisfied so that the stretching policy adopted by the U.K. government can generate

a higher efficacy-weighted protection P (t) over the release policy.

6. Implications of an Alternative Single-Dose Vaccine

Thus far, our model and analysis have been motivated by three approved vaccines developed by

Pfizer, Moderna, and AstraZeneca that require two doses. Another COVID-19 vaccine, developed

by Johnson & Johnson, was approved for emergency use on February 27, 2021. Unlike Pfizer,

Moderna, and AstraZeneca, Johnson & Johnson ran its Phase III trials based on a single-dose

regimen, which achieved an efficacy rate of 66%.12 Without the need to deal with the second-dose

timing issue, how would the single-dose vaccine perform relative to those two-dose vaccines? Clearly,

if the single-dose vaccine has a higher efficacy, it will dominate the two-dose vaccine. However, the

11 For example, the Pfizer vaccine offers 57.7% and 95.3% efficacy levels after the first and second doses; thus,
θ1 = 0.423 and θ2 = 0.048 (Haas et al. 2021).

12 In late January 2021, Johnson & Johnson announced the Phase III trial results of its single-dose COVID-19 vaccine
with a relatively lower efficacy (66% worldwide and 72% in the U.S. trial). However, this vaccine has major operational
advantages. In particular, it has a less stringent temperature requirement than the Pfizer vaccine and only requires
a single dose. Thus, it circumvents the trade-off between offering first and second doses.



Mak, Dai, and Tang: Managing Two-Dose COVID-19 Vaccine Rollouts with Limited Supply 17

relative performance becomes unclear when the single-dose vaccine (e.g., the Johnson & Johnson

vaccine) has a lower efficacy than the two-dose vaccine.

This observation motivates us to compare the rollout dynamics Vi(t) and Pi(t) of the single-dose

regimen against the hold-back and stock-release policies in this section. In preparation, observe

that when offered as a single-dose vaccine, all stock can be immediately released (because the

second dose is no longer needed). Hence, this single-dose regimen can be viewed as an extreme case

of the stretching policy with lead time Ls =mL, where m=∞. Hence, we can apply the analysis

of the stretching policy (see Section 5) to examine the performance of a single-dose vaccine.

Under linear supply growth, the vaccination rate associated with a single-dose regimen satisfies

vd(t) = y(t) = 1 + αt. Using the same approach as presented in Sections 4 and 5 to compare the

vaccinated population and protection levels for the single-dose regimen with the hold-back and

stock-release policies under the two-dose regimen, we obtain the following proposition.

Proposition 5. Compared with the stock hold-back policy under a two-dose regimen, the single-

dose regimen increases the cumulative first-dose inoculations and cumulative first-dose protection

over a full cycle [0,2nL) by:

V d
1 (2nL)−V h

1 (2nL) = nL+αn2L2 > 0

P d
1 (2nL)−P h

1 (2nL) = n2L2 +
2α

3
n3L3 > 0.

Compared with the stock-release policy, the single-dose regimen increases the cumulative first-dose

inoculations and cumulative first-dose protection over a full cycle [0,2nL) by:

V d
1 (2nL)−V r

1 (2nL) = nL+
α

2
(2n2−n)> 0

P d
1 (2nL)−P r

1 (2nL) =
n

2
L2 +

α

2

[
4

3
n3−n(n+ 1)

]
L3 > 0.

From Proposition 5, we can see that the single-dose regimen speeds up the buildup of protection.

(Because only one dose is administered under the single-dose regimen, our results focus only on

pertinent measures V d
1 and P d

1 .)

However, as articulated above, when the single-dose vaccine has a lower efficacy rate than its

two-dose counterparts, the performance of the single-dose vaccine over the two-dose vaccine is

unclear. Specifically, even though the two-dose regimen builds up protection more slowly, it can

reach a higher level of protection due to its higher efficacy. To evaluate this trade-off, we use the

“efficacy-weighted” protection level P (t) for the two-dose vaccine as defined in (4) in §5 to define

the corresponding P d(t) for the single-dose vaccine.

Recall from Section 5 that for the two-dose regimen, one and two doses reduce the risk of infection

by factors of 1− θ1 and 1− θ2, respectively, and ζ = 1−θ1
θ1−θ2

reflects the relative contribution of the
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first dose. Let 1−θd be the efficacy rate of the single-dose vaccine. To make a fair comparison with

a two-dose vaccine, we define ζd = 1−θd
1−θ1

. (For example, the Pfizer vaccine has θ1 = 0.423 and the

Johnson & Johnson vaccine has θd = 0.34 so that ζd = 0.66/0.577 = 1.14.) In addition, by using the

results presented in Proposition 5, we can define the corresponding P d(t) = P d
1 (t) for the single-dose

vaccine. The next proposition follows from direct comparisons.

Proposition 6. Switching from the two-dose regimen under the stock-release policy to the

single-dose regimen can increase the efficacy-weighted protection over the cycle [0,2nL) by

∆P d(2nL), P d(2nL)−P r(2nL) = λ(1− θ1)L2

[
2n2(ζd− 1) +

n− 1

2
+

(
1

2
− 3ζ

4

)
(2n2− 2n+ 1)

]
+λ(1− θ1)

αL3

12

[
(16ζd− 16)n3− 12n+ 6 + (1− ζ)(8n3− 6n2 + 6n− 6)

]
.

A sufficient condition for this improvement to be non-negative is that ζd ≥ 11
8

and ζ ≤ 2
3
.

Recall from above that for the two-dose regimen of the Pfizer vaccine, we have ζ = 0.652, and

for the single-dose regimen of the Johnson & Johnson vaccine, ζd = 1.14. Even though these values

do not satisfy the sufficient condition in Proposition 6, we can compute:

∆P d(2nL) = λ(1− θ1)L2(0.5n2 + 0.58n− 0.54) +λ(1− θ1)
αL3

12
(6.56n3− 1.68n2− 10.32 + 4.32).

We can check that the first term is positive for all n ≥ 1 and that the second term is negative

when n= 1 and positive for n≥ 2. When n= 1, the overall expression is positive when αL≤ 5.36.

Because the supply rate is unlikely to grow more than 5.36 times over lead time L, we are more

likely to observe that the Johnson & Johnson single-dose regimen offers better cumulative efficacy-

weighted protection than the Pfizer vaccine under the stock-release policy for any n. Overall, the

above analysis suggests that the single-dose regimen can underperform in the short run, but will

eventually outperform the higher-efficacy two-dose regimen.

So far, we have obtained three key analytical results. First, we show that the release policy can

improve the cumulative vaccination population and the cumulative protection in Proposition 2.

Second, we prove that the stretching policy can generate a higher efficacy-weighted protection P (t)

than the release policy in Proposition 4 when ζ ≤ 2m
3(m−1)

. Third, we show that a single-dose vaccine

with a lower efficacy can outperform a two-dose vaccine in terms of a higher efficacy-weighted

protection when ζd ≥ 11
8

and ζ ≤ 2
3

in Proposition 6. Besides the performance measures V (t) and

P (t), one should evaluate and compare the symptomatic infection rate, hospitalization rate, and

the mortality rate of different groups of people across all policies over time. To do so, we present

a variant of the SEIR epidemic model to examine these issues numerically in the next section.
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7. Evaluating Rollout Policies via an SEIR Model

In this section, we simulate the pandemic trajectories under the four rollout policies: (1) the

stock hold-back policy (vh1 (t), vh2 (t)), (2) the stock-release policy (vr1(t), vr2(t)), (3) the dose-stretch

policy (Ls =mL with m> 1), and (4) the alternative single-dose vaccine. We begin by presenting

our SEIR epidemic model in Section 7.1. In Section 7.2, we simulate the rollout policies for the

“baseline case” in which the parameter values are listed in Table OA1 of the online appendix.

To analyze the robustness of our simulation results, we conduct sensitivity analyses with respect

to age composition in Section 7.3, risk-based vaccine prioritization in Section 7.4, vaccine supply

disruption in Section 7.5, and the basic reproductive number (R0) in Section 7.6. We caution that,

as our simulation parameters are calibrated to data obtained on the original strain of the vaccines

and the earlier (e.g., Alpha) variants, the results do not necessarily reflect the effects of future

variants. Yet, the same methodology developed in our paper supports new analysis using actual or

estimated parameters associated with future variants.

7.1. SEIR Model

We develop a compartmental SEIR epidemic model to capture the evolution of the COVID-19

pandemic and the vaccine rollout dynamics. Using this SEIR model, we evaluate different rollout

policies by comparing three performance metrics, including symptomatic infections, hospitaliza-

tions, and mortality. These metrics provide an epidemiological perspective and complement the

operational perspective presented in Sections 4 to 6.

7.1.1. Risk Groups and Vaccination States. To capture various age-dependent factors

such as hospitalization rate, mortality rate due to COVID, and frequencies of social contact, we

consider a population of size N (e.g., the U.S. adult population) that consists of a high-risk group

H (e.g., the population aged 65 and above) of size NH and a low-risk group L (e.g., the popu-

lation under the age of 65) of size NL; this setting is consistent with the literature on modeling

compartments with age groups (e.g., Longini et al. 1978). Based on the U.S. demographics, we

normalize the adult population to 100 and set NH and NL to 13 and 87 (according to the profile

of the adult population in the U.S.), respectively. To incorporate the vaccination status of the

two-dose regimen, we denote by (i, k) each individual’s type, where i ∈ {H,L} is the risk group

and k ∈ {0,1,2} is the number of vaccine doses that the individual has received.

7.1.2. Compartments. In line with Keskinocak et al. (2020), an individual of type (i, k) is

in one of the following eight compartments at any time t: susceptible (Sik(t)), exposed (Eik(t)),

infectious and pre-symptomatic (IPik(t)), infectious and asymptomatic (IAik(t)), infectious and

symptomatic (ISik(t)), hospitalized (Hik(t)), recovered (Rik(t)), or deceased (Dik(t)). By consid-

ering this expanded set of states instead of the standard infectious and recovered compartments,
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Figure 1 An expanded SEIR model for group i∈ {H,L}. The downward arrows (in blue) indicate the change in

vaccination status. φ= 1 if
∑

i,kHik ≤K and φ= κ otherwise.
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In the caption, write 𝜙 = 1 if ∑!,#𝐻!# ≤ 𝐾 and 𝜅 otherwise. 
our model captures key features of the COVID-19 pandemic such as asymptomatic transmission

and the demand on the healthcare system due to hospitalization. With two risk groups (i), three

vaccination states (k), and eight compartments for each individual type (i, k), our SEIR model

comprises a total of 48 compartments. Figure 1 illustrates our SEIR model for group i∈ {H,L}.13

7.1.3. Transition between compartments. For each individual of type (i, k), we explain

in Section OA2 of the online appendix about how we determine the transition rate from one com-

partment to a different compartment as depicted in Figure 1. In particular, COVID transmissions

depend on the numbers of infectious and susceptible individuals, their transmissibility and suscep-

tibility (which depend on their vaccination status), and the frequencies of social contact between

the two age groups as governed by a “contact matrix” (Bubar et al. 2020).

After contracting the virus, individuals will go through the exposed and presymptomatic stages,

at the end of which they will either develop symptoms or remain asymptomatic, governed by the

age- and vaccination-dependent probabilities. Those who are symptomatically infected will be hos-

pitalized (and if so, recover or die) according to the age- and vaccination-dependent probabilities.

We calibrate different age- and vaccination-dependent parameter values using the CDC data and

the recent literature and summarize the values in Table OA1 of the online appendix.

In addition to the transition rates among different compartments, our SEIR model depicted in

Figure 1 captures the impact of the healthcare system utilization on mortality rate. Specifically, as

more patients are hospitalized, critical facilities (e.g., intensive care units) become overloaded and

mortality rates increase substantially (Wilde et al. 2021). Details of our mortality rate formulation

are provided in Section OA2.

13 We assume the time horizon to be short enough so that individuals do not move from the low- to high-risk group
and vice versa (their underlying health status does not change). Therefore, the two groups interact only through
sharing the same vaccine supply and hospitalization capacity.
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7.1.4. The Role of Vaccination. To evaluate different vaccine rollout policies via the SEIR

model for an individual type (i, k) as depicted in Figure 1, we can use the vaccination rates

vk(t) (k = 1,2) under each rollout policy presented in Sections 4 to 6 as the key inputs for our

SEIR model. In doing so, we can determine the corresponding transition rates between compart-

ments associated with different vaccination status (e.g., from Si0(t) to Si1(t) after receiving the

first vaccine dose). Based on the system dynamics captured by our SEIR model, we simulate the

following three performance metrics for each risk group i = H,L, under all four aforementioned

rollout policies: (1) The number of active symptomatic infections: ISi(t) =
∑2

k=0 ISik(t), (2) the

number of active hospitalizations: Hi(t) =
∑2

k=0Hik(t), and (3) the cumulative number of deaths:

Di(t) =
∑2

k=0Dik(t). In the following subsections, we compare the simulated performance metrics

ISi(t), Hi(t), and Di(t) via our SEIR model across all four rollout policies.

We simulate our SEIR model over a one-year horizon. The parameter values and the settings

of the simulation are summarized in Table OA1. Consistent with our theoretical analysis in the

previous sections, we consider a supply function that is growing linearly unless otherwise specified.

7.2. Baseline Case

We begin our numerical examples by simulating the performance of the rollout policies under the

baseline case; all the parameter values are listed in Table OA1 of the online appendix.

Recall from Sections 4 to 6 that v1(t) and v2(t) denote the rate of vaccine doses to be given as

first and second doses at time t, under the hold-back, release, stretch or single-dose policies. To

determine who receives the vaccines, we consider a simple proportional allocation rule between the

high- and low-risk groups, e.g., π ·vk(t) and (1−π) ·vk(t) of dose-k supplies (k= 1,2) are allocated

to the high- and low-risk groups at any time t, respectively. In the baseline case, we have π = 1

(i.e., 100% of supply is given to eligible high-risk individuals until they have all been vaccinated).

This is consistent with the strict age-based rollout practice in countries such as the U.S. and U.K..

In §7.3, we shall consider an alternative case with a lower value of π for comparison.

Figure 2 shows the SEIR simulation results for the baseline case when we scale the population

size N = 100. The panels plot the number of active symptomatic cases (left), hospitalizations

(middle), and cumulative deaths (right), for the high-risk group (top), low-risk group (middle) and

total population (bottom). Because the size of the population is normalized to 100, the vertical

axes represent the percentage of the total population in each status of interest. In each panel, the

four rollout policies are compared against the no vaccination benchmark (solid line in black).

From the top panels of Figure 2, we find that vaccination is highly effective in reducing symp-

tomatic cases, hospitalizations and deaths for the high-risk group. Under all four rollout policies,

each of these key metrics are reduced by at least 75%, compared with the no-vaccination benchmark.
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Figure 2 SEIR Simulation Results Under Baseline Case

In comparison, the corresponding reductions are smaller for the low-risk group, due to prioritizing

the high-risk group and the overall larger population of the low-risk group (thus taking longer to

get vaccinated). For the whole population, due to strict priority of vaccinating the high-risk group

(i.e., π= 1), the reduction in deaths (i.e., 69%, 72%, 75% and 76% for the hold-back, release, stretch

and single-dose policies, respectively) are more substantial than the reductions in hospitalizations

(i.e., 48%, 51%, 57% and 51%, respectively) and in symptomatic infections (i.e., 26%, 29%, 39%

and 39%, respectively).

Consistent with the implications from our analytical findings, Figure 2 shows that both the

stretching policy and the single-dose regimen are effective in accelerating vaccine impact and reduc-

ing symptomatic infections, hospitalizations, and mortality. The release policy also outperforms

the hold-back policy in all three metrics, although the difference is modest in the baseline case.
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7.3. Age Composition

We now evaluate how the demographic composition may influence the choice of rollout policies.

Since hospitalization and mortality risks of COVID are highly dependent on age, the pandemic

impact on relatively younger (e.g., in India and South Africa, with a median ages of about 28)

and older (e.g., in the U.S., with median age of about 38) populations can differ significantly. All

else being the same, we now change NH to half as in the baseline case (so that 6.5% of the total

population is above 65, compared with 93.5% below 65) so that the resulting population is younger.

Figure 3 depicts our results.

Figure 3 SEIR Simulation Results with Younger Population

Figure 3 resembles the baseline case as reported in Figure 2 in terms of, for example, the effec-

tiveness of the stretching policy and the single-dose regimen. Observe from Figure 3 that even in a
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younger population with a 6.5% high-risk population, vaccination reduces mortality significantly—

the four policies achieve a mortality reduction from 68% (hold-back policy) to 72% (stretching

policy). Despite similar percentage reductions in mortality compared to the baseline case (Figure 2),

the absolute number of deaths is considerably lower because we consider a younger population.

However, this is not the case for the other two key metrics, as the younger population records

similar absolute levels of symptomatic cases and hospitalizations as the older population. This is

due to the fact that most symptomatic cases and about half of hospitalizations are associated with

the low-risk group due to its higher transmission rate (albeit lower mortality rate).

Interestingly, Figure 3 shows that, relative to the stretching policy, the single-dose regimen

does not perform as well when the population is younger. Specifically, the single-dose regimen

reduces peak symptomatic cases, peak hospitalizations, and cumulative mortality by 38%, 46%,

and 69%, respectively. However, it is outperformed by the stretching policy, which reduces the

three key metrics by 43%, 52% and 72%, respectively. In terms of preventing mortality, the single

dose regimen performs worse than the release policy (71% reduction) and is similar to the hold-

back policy (68% reduction). The reason is that, when the high-risk group is relatively small, the

main advantage of the single-dose regimen (i.e., rollout speed) becomes less appealing, whereas its

weakness (i.e., lower efficacy, especially in preventing infections) becomes more pronounced.

This observation has important practical implications. Prior to the halt of the Johnson & John-

son vaccine in the U.S. due to blood clot concerns, its “one-and-done” logistical convenience was

considered highly promising for younger age groups (Dai et al. 2021). Various countries have since

refocused the rollout of Johnson & Johnson to older age groups on the basis of lower blood clot

risks (Strauss 2021). Our findings suggest that doing so is sensible logistically and epidemiologically

as well, since the single-dose regimen would perform better in an older population.

7.4. Risk-based Prioritization

In the baseline case (Figure 2), we have set π = 1 (i.e., 100% of supply is given to eligible high-

risk individuals until they have all been vaccinated). In this subsection, we compare this with an

alternative case that has π = 0.5 (i.e., half of the supply is allocated to the high-risk group of age

above 65 and the remaining half is allocated to the low-risk group of age below 65). Because the

low-risk group has higher frequencies of social contacts than the high-risk group, the alternative

case is intended to examine the impact of allocating some vaccine to the low-risk group earlier as

a mechanism to curb the infection rates.

Figure 4 plots the simulation results for the alternative case with π = 50% priority for the

high-risk group. Despite a different vaccine priority rule, Figure 4 resembles Figure 2 in that the

single-dose regimen and stretch policies are the most effective in reducing symptomatic infections,



Mak, Dai, and Tang: Managing Two-Dose COVID-19 Vaccine Rollouts with Limited Supply 25

Figure 4 SEIR Simulation Results with π= 0.5

hospitalizations and mortality. In addition, we observe from Figure 4 that the effects of vaccination

are abated for the high-risk group and improved for the low-risk group under 50% priority, compared

with the baseline case (Figure 2) which strictly prioritizes the high-risk group. Because most deaths

arise from the high-risk group, this leads to higher overall mortality (bottom-right panel) under the

release and hold-back policies. On the other hand, because most symptomatic cases arise from the

low-risk group that has a larger population size and more social contacts, a less stringent risk-group

priority leads to fewer symptomatic cases, and a similar or lower number of hospitalizations.

Our findings reflect an important trade-off. Notwithstanding the importance of protecting the

most vulnerable people by prioritizing the high-risk group, a strict priority (e.g., the appointment

system in the U.K., where younger age groups cannot make bookings until the majority of older

age groups receive their vaccines) can be inefficient in containing the spread of the pandemic due

to the more frequent social contacts of younger age groups. This is because the vaccines (e.g.,
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Pfizer and AstraZeneca) have significant effects on not only preventing infections, but also reducing

infectiousness of those who get infected despite vaccinations, as found by Public Health England

(Harris et al. 2021) in the U.K. rollout. Many countries and regions, including various states of

the U.S., also prioritize the vaccination of younger individuals in high-contact essential professions,

such as public transit drivers, delivery drivers, and postal service workers, together with the elderly;

vaccinating them helps prevent secondary infections.

Furthermore, we notice that the differences (in all three key metrics) between the rollout policies

become more pronounced under less stringent (50%) priority. In particular, the single-dose regimen

and the stretching policy, which are effective in accelerating vaccine coverage, become relatively

more beneficial when supply is split between the risk groups. This is intuitive, because splitting

supply leads to fewer doses available for the high-risk group, which in turn heightens the impor-

tance of rollout efficiency. On the whole, we find that both the stretching policy and single-dose

regimen offer good trade-offs under the 50% priority case: these policies lead to lower symptomatic

cases (46% and 50% reduction from the no-vaccination benchmark, respectively, compared with

39% and 39% under strict priority), and a similar number of hospitalizations (58% and 63% reduc-

tion from the no-vaccination benchmark, respectively, compared with 57% and 55% under strict

priority) through preventing transmissions, and record similar mortality figures (71% and 76%

reduction from the no-vaccination case, compared with 75% and 76% under strict priority) thanks

to accelerated build-up of protection for the high-risk group.

7.5. Supply Disruptions

So far, our analytical model and simulation analysis are based on the assumption that the sup-

ply process is smooth. However, the supply of the COVID-19 vaccines is subject to disruptions

to the production14 or distribution process.15 We conduct additional simulations to examine the

performance of all four rollout policies in the presence of potential supply disruptions.

We simulate a scenario with production hiccups occurring at the initial stage of vaccine rollouts.

In particular, the supply rate is assumed to be growing linearly, as explained earlier. However, the

supply rate y(t) suffers from two disruptions occurring Days 81–110 and Days 141–170, during

which the supply rate is decreased to half of the initial rate. Figure 5 depicts our simulated results.

Figure 5 shows that under supply disruptions, the results obtained from the baseline case continue

to hold: the single-dose regimen and stretch policies are most effective. Because rollouts prioritize

the high-risk group, it is natural that the improvements for the low-risk group are limited with

14 For example, the AstraZeneca vaccine faces an uncertain yield due to uneven cell growth in bioreactors.

15 Disruption can occur due to weather conditions as experienced in the U.S. during the snow storm in February.



Mak, Dai, and Tang: Managing Two-Dose COVID-19 Vaccine Rollouts with Limited Supply 27

Figure 5 SEIR Simulation Results with Supply Disruptions

lumpy supply. Overall, substantial reduction in mortality can still be achieved, especially under

the stretching policy or the single-dose regimen policy.

We also observe that the qualitative insights from the baseline case with smooth supply (Figure 2)

remain intact; that is, the single-dose regimen and stretch policies help prevent mortality better (by

47% and 44% compared with the no-vaccination case) than do the release and hold-back policies

(39% and 34% reductions, respectively). These figures suggest that the performance gaps between

the policies become more pronounced during supply disruptions, because making full use of the

limited (and unreliable) supply to build up protection becomes more essential.

7.6. Basic Reproduction Number (R0)

Finally, we evaluate the impact of the speed at which the pandemic propagates, as measured by the

basic reproduction number R0. In the COVID-19 pandemic, the R0 number could change due to

the rise of more transmissible variants or the relaxation of social distancing measures. In Figure 6,
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we conduct our simulation based on the case when R0 = 1.8, which is higher than the baseline case

that has R0 = 1.5 (Figure 2).

Figure 6 SEIR Simulation Results with R0 = 1.8

Figure 6 reveals that whereas all key metrics have worsened under faster transmissions, the

results obtained from the baseline case continue to hold qualitatively. Figure 6 also offers insights

similar to those from the case with supply disruptions (Figure 5). In particular, vaccine rollouts

mostly improve the key metrics for the high-risk group and show limited benefits for the low-risk

group. Overall, we observe significant improvements in mortality reduction—by 57%, 52%, 42%

and 36% under the single-dose, stretch, release and hold-back policies, respectively. Comparing

these figures with those in the baseline case (which range from 69% to 76% reduction across the

policies), we observe that under a higher R0, choosing the right rollout policy has a greater impact

on reducing mortality.
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The reason that the high R0 and the supply disruption cases are qualitatively similar is that

vaccination outcomes depend on the relative speeds of the pandemic and of vaccine rollout. When

supply is lumpy or when R0 is high, vaccination rollout lags behind the pandemic spread, and

thus the rollout policies that accelerate protection (i.e., single dose and stretching policies) perform

relatively better in preventing mortality of the high-risk group and thus the total population.

8. Conclusions

Rolling out a two-dose COVID-19 vaccine such as that developed by Pfizer offers a rare and

compelling research context for examining the impact of different inventory control policies (i.e.,

hold-back, releasing, and stretching) on public health. We develop a modeling framework of a vac-

cine rollout process and complement it with an SEIR model to capture the disease transmission

process. We compare—both analytically and numerically—various vaccine rollout policies, includ-

ing (1) holding back all the second doses, (2) releasing all the doses, and (3) stretching the lead

time between two doses. We also examine the rollout of a single-dose vaccine with a lower efficacy

level than its two-dose counterparts.

Our key findings are three-fold. First, one might expect releasing all the second doses would lead

to an oversized effect in slowing down the pandemic. Our analytical results show that compared

with the hold-back policy, releasing doses does help slow down infections and end the pandemic

sooner; we numerically show that such an impact can be modest. This result is in part due to the

fact that releasing more first doses also necessitates more second doses in the future; we show that

even if one intends to release all second doses, fewer than half of the available doses can be used

for first-dose appointments to avoid delays in administering the required second doses, regardless

of how fast supply grows over time. Second, stretching the between-dose lead time helps reduce

mortality as well as infections and hospitalizations (more than under the strategy of releasing

second doses). Third, a single-dose vaccine, even with an overall efficacy significantly lower than

its counterparts, can be more effective in infection control.

It should be acknowledged that the logistics parameters of vaccine regimens (i.e., one or two

doses, recommended lead time) depend on the design of trials and the data presented for regulatory

approval. For instance, the fact that Pfizer requires two doses but Johnson & Johnson requires only

one is primarily due to how the respective trials were designed and thus how the specific regimens

were approved, but is not necessarily reflective of the differences in the science of the vaccines.16

In this sense, our results underline the importance of taking the operational aspect of the rollout

process into consideration when designing clinical trials.

16 The authors acknowledge Andrew Pollard of the University of Oxford for this important insight.
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Our model has several limitations that can serve as subjects for future research. First, COVID-

19 vaccine rollouts inspire future research into a wide range of operational and logistics issues

specific to vaccine administration, including cold chain management, inventory management, and

manufacturing capacity planning (Dai and Song 2021). One particularly interesting area of research

entails incorporating and managing the uncertainty associated with the number of doses that can

be extracted from each vial. Second, as Mak and Tang (2021) note, no-shows for second-dose

appointments may worsen when the time interval between two doses is stretched from three weeks

to 12 weeks for a variety of reasons, including, for example, the perception that the second dose

provides limited incremental benefit due to the stretching. To incorporate potential no-shows, one

may extend our SEIR model by adding a new parameter capturing the reduction in the second-dose

vaccination rate. Third, we consider in this paper a time horizon long enough that the pandemic

subsides. One related matter that we do not consider is the possibility of waning vaccine effects,

which could affect infections beyond the time horizon. Lastly, several highly contagious new variants

of SARS-CoV-2, the virus causing COVID-19, have been found in various countries. Examining

other rollout policies that can expedite herd immunity even more quickly to reduce the spread and

mutation of the virus would be of interest.

Our modeling framework represents an initial attempt to examine different vaccine rollout poli-

cies under limited supply. In addition to helping inform vaccine rollout policymaking, our modeling

framework can be applied to analyze similar issues facing local vaccination planners and health

systems leadership in both the current and future epidemics. At the global level, our work draws

from the experience of the E.U., U.K., and U.S. Yet our results have important implications for

vaccine planning in various countries, especially because developing countries are expected to face

extremely limited vaccine supply up to 2023 (Hopkins 2021). More broadly, our paper sheds light

on how to develop effective operations strategies for distributing time-sensitive resources in times

of crisis.
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Arifoğlu K, Tang CS (2021) A two-sided incentive program for coordinating the influenza vaccine supply

chain. Manufacturing Service Oper. Management, forthcoming.

Arnold C (2020) The biggest logistics challenge in history. New Scientist 248(3309):36–40.

Arrow KJ, Harris T, Marschak J (1951) Optimal inventory policy. Econometrica 19(3):250–272.

Bar-On Y, Baron T, Cornfeld O, Milo R, Yashiv E (2020) COVID19: Erroneous modelling and its policy

implications. Weizmann Institute of Science Working Paper.

Boseley S (2021) Why has AstraZeneca reduced promised vaccine supply to EU and is UK affected? Guardian

(Jan 26). http://bit.ly/azredeuuk Accessed February 18, 2021.

Bubar KM, Reinholt K, Kissler SM, Lipsitch M, Cobey S, Grad YH, Larremore DB (2021) Model-informed

COVID-19 vaccine prioritization strategies by age and serostatus. Sci. 371(6532) 916–921.

Chen MK, Chevalier JA, Long EF (2020) Nursing home staff networks and COVID-19. Proc. National Acad.

Sci. 118(1):e2015455118.

Chick SE, Mamani H, Simchi-Levi D (2008) Supply chain coordination and influenza vaccination. Oper. Res.

56(6):1493–1506.

Chick SE, Hasija S, Nasiry J (2017) Information elicitation and influenza vaccine production. Oper. Res.

65(1):75–96.

Cho S-H, Tang CS (2013) Advance selling in a supply chain under uncertain supply and demand. Manufac-

turing Service Oper. Management 15(2):305–319.

Cummings K, Behzad B, Martonosi S (2020) Centers for Disease Control and Prevention as a strategic agent

in the pediatric vaccine market: An analytical approach. Manufacturing Service Oper. Management,

forthcoming.

Dai T, Cho S-H, Zhang F (2016) Contracting for on-time delivery in the US influenza vaccine supply chain.

Manufacturing Service Oper. Management 18(3):332–346.

Dai T, Mak HY, Tang CS (2021) The great promise of a one-dose vaccine. Barron’s (February 26, 2021).

http://bit.ly/barronsjnj Accessed June 11, 2021.

Dai T, Song JS (2021) Transforming COVID-19 vaccines into vaccination: Challenges and opportunities for

management scientists. Health Care Management Sci. ePub ahead of print.

Dai T, Yadav P (2021) Release second doses to speed vaccinations. USA Today (January 13) 7A.

http://bit.ly/azredeuuk
http://bit.ly/barronsjnj


32 Mak, Dai, and Tang: Managing Two-Dose COVID-19 Vaccine Rollouts with Limited Supply

Duijzer, L, van Jaarsveld, W, Wallinga, J, Dekker, R (2018) Dose-optimal vaccine allocation over multiple

populations. Production and Operations Management, 27(1), 143-159.

Dvoretzky A, Kiefer J, Wolfowitz J (1953) On the optimal character of the (s,S) policy in inventory theory.

Econometrica 21(4):586—596.

Gallien, J, Rashkova, I, Atun, R, Yadav, P (2017) National drug stockout risks and the global fund disburse-

ment process for procurement. Production Oper. Management, 26(6):997–1014.

Gottlieb S (2021) Pharmacies can get shots in arms. Wall Street Journal (January 3). http://on.wsj.com/

3aim4Be Accessed February 18, 2021.

Hall SN, Jacobson SH, Sewell EC (2008) An analysis of pediatric vaccine formulary selection problems. Oper.

Res. 56(6):1348–1365.

Haas EJ, Angulo FJ, McLaughlin JM, Anis E, Singer SR, Khan F, Brooks N, et al. (2021) Impact and

effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hos-

pitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study

using national surveillance data. Lancet 397(10287):1819–1829.

Hopkins JS (2021). Developed countries lock up Covid-19 vaccines through 2023. Wall Street Journal (June

2). https://on.wsj.com/3pL3qbh Accessed June 11, 2021.

Kaplan EH (2020) OM Forum—COVID-19 scratch models to support local decisions. Manufacturing Service

Oper. Management 22(4):645–655.

Keskinocak P, Oruc BE, Baxter A, Asplund J, Serban N (2020) The impact of social distancing on COVID19

spread: State of Georgia case study. PLoS ONE 15(10):e0239798.

Kraiselburd, S, Yadav, P (2013) Supply chains and global health: an imperative for bringing operations

management scholarship into action. Production Oper. Management, 22(2):377–381.

Longini IM, Ackerman E, Elveback LR (1978) An optimization model for Influenza A epidemics. Math.

Biosciences 38(1–2):141–157.

Mak HY, Tang CS (2021) More vaccine supplies are being released. It’s a gamble. Barron’s (Jan 12, 2021).

http://bit.ly/2ndvaxgamble Accessed February 18, 2021.

Mancini DP, Gross A (2021) UK decision to space vaccination doses sparks fierce debate over risk. Financial

Times (January 8). http://on.ft.com/3pgBRVr Accessed February 18, 2021.

Miller H, Cohn M (2021) Maryland facing shortage of second COVID vaccine doses, health secretary says.

Baltimore Sun (February 1). http://bit.ly/md2dosehb Accessed February 18, 2021.

Muhumuza R, Mutsaka F (2021) In poorest countries, surges worsen shortages of vaccines. Associated Press

(June 17). http://bit.ly/africavaxap Accessed June 20, 2021.

Natarajan, KV, Swaminathan, JM (2017) Multi-treatment inventory allocation in humanitarian health set-

tings under funding constraints. Production Oper. Management 26(6): 1015–1034.

http://on.wsj.com/3aim4Be
http://on.wsj.com/3aim4Be
https://on.wsj.com/3pL3qbh
http://bit.ly/2ndvaxgamble
http://on.ft.com/3pgBRVr
http://bit.ly/md2dosehb
http://bit.ly/africavaxap


Mak, Dai, and Tang: Managing Two-Dose COVID-19 Vaccine Rollouts with Limited Supply 33

O’Donnell C, Spalding R (2021) U.S. releases millions of COVID-19 doses, urges states to broaden vaccine

access. Reuters News (Jan 12, 2021). http://reut.rs/3rBPJv1

Paltiel D, Schwartz J, Zheng A, Walensky RP. (2021a) Clinical outcomes of a COVID-19 vaccine: Imple-

mentation over efficacy. Health Affairs 40(1): 42-52.

Paltiel AD, Zheng A, Schwartz JL (2021b) Speed versus efficacy: Quantifying potential tradeoffs in COVID-

19 vaccine deployment. Ann. Intern Medicine 174(4):568–570.

Porteus EL (1990) Chapter 12 Stochastic inventory theory. D.P. Heyman, M.J. Sobel, eds. Handbooks in

Operations Research and Management Science. (Elsevier, Amsterdam, The Netherlands), 605–652.

Rawlinson K (2020) More data needed before giving just one vaccine dose, says Covid adviser. The Guardian.

https://bit.ly/3aEz6tj Accessed February 18, 2021.

Scarf H (1960) The optimality of (S, s) policies in the dynamic inventory problem. K. J. Arrow, S. Karlin,

P. Suppes, eds. Mathematical Methods in the Social Sciences. Stanford University Press, Stanford, CA,

196–202.

Shumsky RA, Smith J, Hoen A, Gilbert M (2021) Allocating COVID-19 vaccines: Save one for the second

dose? Dartmouth College Working Paper.

Song JS, van Houtum GJ, Van Mieghem JA (2020) Capacity and inventory management: Review, trends,

and projections. Manufacturing Service Oper. Management 22(1):36–46.

Strauss M (2021) Belgium halts J&J COVID vaccine for under 41s after first EU death. Reuters (May 26).

https://reut.rs/3gsfKJl Accessed June 11, 2021.

Tuite AR, Zhu L, Fisman DN, Salomon JA (2021) Alternative dose allocation strategies to increase benefits

from constrained COVID-19 vaccine supply. Ann. Intern Medicine 174(4):570–572.

Voysey M, Costa Clemens SA, Madhi SA, Weckx LY, Folegatti PM, Aley PK, Angus B, et al. (2021)

Single-dose administration and the influence of the timing of the booster dose on immunogenicity and

efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet

397(10277):881–891.

Wilde H, Mellan T, Hawryluk I, Dennis JM, Denaxas S, Pagel C, Duncan A, et al. (2021) The association

between mechanical ventilator availability and mortality risk in intensive care patients with COVID-19:

A national retrospective cohort study. medRxiv 2021.01.11.21249461.

Yamin D, Gavious A (2013) Incentives’ effect in influenza vaccination policy. Management Sci. 59(12):2667–

2686.

http://reut.rs/3rBPJv1
https://bit.ly/3aEz6tj
https://reut.rs/3gsfKJl


Mak, Dai, and Tang: Managing Two-Dose COVID-19 Vaccine Rollouts with Limited Supply OA1

Online Appendix to “Managing Two-Dose COVID-19 Vaccine
Rollouts with Limited Supply”

OA1. Technical Proofs

Proof of Lemma 1

No backlogs exist any time at or before t if and only if

(1−β)y(u)≥ vr1(u−L) for all u≤ t.

The above statement can be rewritten as

(1−β)y(nL+ τ)≥ vr1((n− 1)L+ τ) for n= 1,2, . . . and all τ ∈ [0,L]. (OA1)

We prove (OA1) by induction. First, the case in which n = 1 and n = 2 obviously holds for

all τ ∈ [0,L] given the first two conditions of the lemma. Next, suppose the statement holds for

n= 1, · · · , k. Then, for n= k+ 1, it holds that

vr1(kL+ τ) = y(kL+ τ)− vr2(kL+ τ)

= y(kL+ τ)− vr1((k− 1)L+ τ) (because B(t) = 0 for all t≤ kL+ τ)

= y(kL+ τ)− y((k− 1)L+ τ) + vr1((k− 2)L+ τ)

≤ y(kL+ τ)−βy((k− 1)L+ τ) (by induction assumption).

Because (1−β)y((k+1)L+τ)≥ y(kL+τ)−βy((k−1)L+τ), the statement also holds for n= k+1.

Thus, it holds for any positive integer n by induction, which completes the proof. Q.E.D.

Proof of Lemma 2

The rates of vaccination are given by

vh1 (t) =
1

2
+
α

2
t

vh2 (t) =

{
0 for t∈ [0,L)
1
2

+ α
2
(t−L) otherwise.

The result follows from integrating the vaccination rates with respect to t. Q.E.D.

Proof of Proposition 1

First, in t∈ [0,L), all available supply is released for first-dose appointments:

vr1(t) = 1 +αt

V r
1 (t) = t+

α

2
t2
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P r
1 (t) =

1

2
t2 +

α

6
t3

vr2(t) = V r
2 (t) = P r

2 (t) = 0.

For t ∈ [L,2L), the demand for the second dose is vr1(t−L) = 1 +α(t−L) and the total supply

available is 1+αt. For no backlogs to exist, all second-dose demand will be fulfilled, that is, vr2(t) =

1+α(t−L), and the supply available for first doses will be y(t)−vr2(t) = αL. To ensure this amount

exceeds the fraction β, we require β ≤ αL
1+αt

for all t∈ [L,2L), that is, β ≤ αL
1+2αL

= 1
2
− 1

2(1+2αL)
.

For t∈ [2L,3L), the demand for the second dose is vr1(t−L) = αL and the supply is y(t) = 1+αt.

Fulfilling all second-dose demand, the capacity available for first doses is given by 1 +α(t−L). For

this amount to exceed a β fraction of available supply, we require β ≤ 1+α(t−L)

1+αt
for all t∈ [2L,3L),

that is, β ≤ 1+αL
1+2αL

, which is implied by the previous necessary condition, β ≤ αL
1+2αL

= 1
2
− 1

2(1+2αL)
.

Continuing this argument, the vaccination rate follows an oscillating pattern:

vr1(t) =

{
1 +α(t−nL) for t∈ [2nL, (2n+ 1)L)

α(n+ 1)L for t∈ [(2n+ 1)L, (2n+ 2)L)
. (OA2)

vr2(t) =

{
αnL for t∈ [2nL, (2n+ 1)L)

1 +α(t−nL) for t∈ [(2n+ 1)L, (2n+ 2)L).
(OA3)

The upper bound on β increases over time. Thus, β ≤ 1
2
− 1

2(1+2αL)
is sufficient. Q.E.D.

Proof of Proposition 2

The stock-release policy increases vaccination rates by:

∆vr1(t) =

{
1 +α(t−nL)− 1

2
(1 +αt) for t∈ [2nL, (2n+ 1)L)

α(n+ 1)L− 1
2
(1 +αt) for t∈ [(2n+ 1)L, (2n+ 2)L)

=

{
1
2

+ α
2
(t− 2nL)> 1

2
for t∈ [2nL, (2n+ 1)L)

− 1
2

+ α
2
[(2n+ 2)L− t]>− 1

2
for t∈ [(2n+ 1)L, (2n+ 2)L).

In the interval [2nL, t) where t ∈ [2nL, (2n+ 1)L), the release policy increases the cumulative

vaccinations by: ∫ t

2nL

∆vr1(τ)dτ =
1

2
(t− 2nL) +

α

2

∫ t

2nL

(τ − 2nL)dτ

=
1

2
(t− 2nL) +

α

4
(t− 2nL)2.

Similarly, in the interval [(2n+1)L, t), where t∈ [(2n+1)L, (2n+2)L), the release policy increases

the cumulative vaccinations by∫ t

(2n+1)L

∆vr1(τ)dτ =−1

2
[t− (2n+ 1)L] +

α

2

∫ t

(2n+1)L

[(2n+ 2)L− τ ]dτ

=−1

2
[t− (2n+ 1)L] +

α

4

{
L2− [2(n+ 1)L− t]2

}
.
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The above implies that over [2nL, (2n+2)L), the gain amounts to α
2
L2. Thus, over the time period

t∈ [0, t), the release policy increases the cumulative vaccinations by:

∆V r
1 (t) =


α
2
nL2 + 1

2
(t− 2nL) + α

4
(t− 2nL)2 for t∈ [2nL, (2n+ 1)L)

α
2
nL2 + 1

2
L+ α

2
L2− 1

2
[t− (2n+ 1)L]

−α
4
[2(n+ 1)L− t]2 for t∈ [(2n+ 1)L, (2n+ 2)L).

Going through similar steps, in the interval [2nL, t), where t∈ [2nL, (2n+1)L), the release policy

increases the cumulative protection by:∫ t

2nL

∆V r
1 (τ)dτ =

α

2
nL2(t− 2nL) +

∫ t

2nL

[
(τ − 2nL) +

α

4
(τ − 2nL)2

]
dτ

=
α

2
nL2(t− 2nL) +

1

4
(t− 2nL)2 +

α

12
(t− 2nL)3

=
1

4
L2 +

α

2
L3

(
n+

1

6

)
(when t= (2n+ 1)L).

In the interval [(2n+ 1)L, t), where t ∈ [(2n+ 1)L, (2n+ 2)L), the release policy increases the

cumulative protection by:∫ t

(2n+1)L

∆V r
1 (τ)dτ =

(
α

2
nL2 +

1

2
L+

α

2
L2

)
[t− (2n+ 1)L]−

∫ t

(2n+1)L

{
[τ − (2n+ 1)L]− α

4
[(2n+ 2)L− τ ]2

}
dτ

=

(
α

2
nL2 +

1

2
L+

α

2
L2

)
[t− (2n+ 1)L]− 1

4
[t− (2n+ 1)]2− α

12

{
L3− [(2n+ 2)L− t]3

}
=

1

4
L2 +

α

2
L3

(
n+

5

6

)
(when t= (2n+ 2)L).

Thus, the gain in cumulative protection over the period [0, t) is given by

∆P r
1 (t) =



n
2
L2 + α

2
L3 (2

∑n

i=0 i)

+α
2
nL2(t− 2nL) + 1

4
(t− 2nL)2 + α

12
(t− 2nL)3 for t∈ [2nL, (2n+ 1)L)

(n
2

+ 1
4
)L2 + α

2
L3
(
2
∑n

i=0 i+n+ 1
6

)
+
(
α
2
nL2 + 1

2
L+ α

2
L2
)

[t− (2n+ 1)L]

− 1
4
[t− (2n+ 1)]2− α

12
[L3− [2(n+ 1)L− t]3] for t∈ [(2n+ 1)L, (2n+ 2)L).

Over a full cycle [0,2nL), the release policy improves the cumulative protection by

∆P r
1 (2nL) =

n

2
L2 +

α

2
L3

(
2

n∑
i=0

i

)
=
n

2
L2 +

α

2
L3n(n+ 1), and

∆P r
2 (2nL) = ∆P r

1 ((2n− 1)L)

=

(
n− 1

2
+

1

4

)
L2 +

α

2
L3

(
2
n−1∑
i=0

i+n− 1 +
1

6

)

=

(
n− 1

2
+

1

4

)
L2 +

α

2
L3

(
n2− 5

6

)
.

Q.E.D.
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Proof of Proposition 3

Following Proposition 2, the cumulative first- and second-dose inoculations under the stock-release

policy are given by:

V r
1 (t) =


t
2

+ αt2

4
+ α

2
nL2 + 1

2
(t− 2nL) + α

4
(t− 2nL)2 for t∈ [2nL, (2n+ 1)L)

t
2

+ αt2

4
+ α

2
nL2 + 1

2
L+ α

2
L2− 1

2
[t− (2n+ 1)L]

−α
4
[2(n+ 1)L− t]2 for t∈ [(2n+ 1)L, (2n+ 2)L)

V r
2 (t) = V r

1 (t−L).

At t= 2mL, we have

V r
1 (2mL) =mL+α

(
m2 +

m

2

)
L2

V r
2 (2mL) =

(2m− 1)L

2
+
α

4
(2m− 1)2L2 +

α

2
(m− 1)L2 +

1

2
L+

α

4
L2

=mL+
3α

4
L2(2m2− 2m+ 1).

For the stretching policy, the same derivation holds with the increased lead time:

V s
1 (2mL) =Ls +α

(
1 +

1

2

)
(Ls)2

=mL+
3αm2L2

2

= V r
1 (2mL) +α · m

2−m
2

·L2

V s
2 (2mL) =Ls +

3α

4
(Ls)2

=mL+
3α

4
L2m2

= V r
2 (2mL)− 3α

4
L2(m2− 2m+ 1).

Similarly, following Proposition 2, the cumulative protection under the stock-release policy is

given by:

P r
1 (2mL) =m2L2 +

2α

3
m3L3 +

m

2
L2 +

α

2
L3m(m+ 1)

=
2m2 +m

2
L2 +αL3

[
2

3
m3 +

1

2
m(m+ 1)

]
P r

2 (2mL) =
1

4
(2m− 1)2L2 +

α

12
(2m− 1)3L3 +

(
m− 1

2
+

1

4

)
L2 +

α

2
L3

(
m2− 5

6

)
=

3

4
(2m2− 2m+ 1)L2 +

αL3

12
(8m3− 6m2 + 6m− 6).

Similarly, under the dose-stretching policy, the cumulative protection can be written as:

P s
1 (2mL) =

3

2
(Ls)2 +

5

3
α(Ls)3
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= P r
1 (2mL) +

m2−m
2

L2 +αL3[2m3−m(m+ 1)]

P s
2 (2mL) =

3

4
m2L2 +

αL3

12
(2m3)

= P r
2 (2mL)− 3

4
(m2− 2m+ 1)L2− αL

3

2
(m3−m2 +m− 1)

= P r
2 (2mL)− 3

4
(m− 1)2L2− αL

3

2
(m− 1)(m2 + 1),

which completes the proof. Q.E.D.

Proof of Proposition 4

Following Proposition 3, dose stretching increases efficacy-weighted protection by:

∆P s(2mL) = λ(1− θ1) [∆P s
1 (2mL) + ζ∆P s

2 (2mL)]

=
L2

4
λ(1− θ1)

[
2m(m− 1)− 3(m− 1)2ζ

]
+
αL3

2
λ(1− θ1)

[
4m3− 2m(m+ 1)− (m− 1)(m2 + 1)ζ

]
=
L2

4
λ(1− θ1)

[
2m(m− 1)− 3(m− 1)2ζ

]
+
αL3

2
λ(1− θ1)

[
2(m− 1)(2m2 +m)− (m− 1)(m2 + 1)ζ

]
.

If m= 1 or ζ ≤ 2m
3(m−1)

, the term [2m(m− 1)− 3(m− 1)2ζ]≥ 0. Also, for any m≥ 1, 2m2 +m)>

m2 + 1. Thus the term [2(m− 1)(2m2 +m)− (m− 1)(m2 + 1)ζ]> 0 if ζ ≤ 2. Because 2m
3(m−1)

< 2 for

all m> 1, ∆P s(2mL)> 0 as long as ζ ≤ 2m
3(m−1)

. Q.E.D.

Proof of Proposition 5

Because vd(t) = 1 + αt, we have V d(t) = t+ α
2
t2 and P d(t) = t2

2
+ α

6
t3. These expressions directly

lead to the comparisons with the hold-back policy.

Comparing against the stock-release policy gives

V d
1 (2nL)−V r

1 (2nL) = 2nL+
α

2
(2nL)2− 2nL

2
− α

4
(2nL)2− α

2
nL2

= nL+
α

2
(2n2−n)

P d
1 (2nL)−P r

1 (2nL) =
1

4
(2nL)2 +

α

12
(2nL)3− n

2
L2− α

2
L3n(n+ 1)

=
n

2
L2 +

α

2
L3

[
4

3
n3−n(n+ 1)

]
,

which completes the proof. Q.E.D.

Proof of Proposition 6

Recall from the proof of Proposition 4 that

P r
1 (2nL) =

2n2 +n

2
L2 +αL3

[
2

3
n3 +

1

2
n(n+ 1)

]
P r

2 (2nL) =
3

4
(2n2− 2n+ 1)L2 +

αL3

12
(8n3− 6n2 + 6n− 6).
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For the single-dose regimen,

P d
1 (2nL) = 2n2L2 +

4α

3
n3L3.

Comparing the efficacy-weighted protection levels,

∆P d(2nL) = λ(1− θ1)ζdP d
1 (2nL)−λ(1− θ1)[P r

1 (2nL) + ζP r
2 (2nL)]

= λ(1− θ1)

{
ζd
(

2n2L2 +
4α

3
n3L3

)
− 2n2 +n

2
L2−αL3

[
2

3
n3 +

1

2
n(n+ 1)

]
−3

4
ζ(2n2− 2n+ 1)L2− ζ αL

3

12
(8n3− 6n2 + 6n− 6)

}
= λ(1− θ1)L2

[
2n2ζd− 2n2 +n

2
− 3ζ

4
(2n2− 2n+ 1)

]
+λ(1− θ1)

αL3

12

[
16n3ζd− 8n3− 6n2− 6n− ζ(8n3− 6n2 + 6n− 6)

]
= λ(1− θ1)L2

[
2n2(ζd− 1) +

n− 1

2
+

(
1

2
− 3ζ

4

)
(2n2− 2n+ 1)

]
+λ(1− θ1)

αL3

12

[
(16ζd− 16)n3− 12n+ 6 + (1− ζ)(8n3− 6n2 + 6n− 6)

]
.

In the above, the L2 term is non-negative if ζd ≥ 1 and ζ ≤ 2
3
. The L3 term is non-negative if ζ ≤ 1

and ζd ≥ 11
8

, which ensures (16ζd − 16)n3 ≥ 6n3. Thus, a sufficient condition for ∆P d(2nL)≥ 0 is

that ζd ≥ 11
8

and ζ ≤ 2
3
.

Q.E.D.

OA2. SEIR Epidemic Model

In this section, we first provide technical details of our SEIR model in Section OA2.1. Next, we

provide the rationale for the parameter values used in our baseline case in Section OA2.2.

OA2.1. SEIR Model Description

We consider a variant of the standard SEIR model to incorporate the effect of vaccination on the

evolution of the pandemic.

• We consider the population to comprise of a high-risk group (age 65 and above) and a low-risk

group (64 or below), indexed by i ∈ {H,L}. The initial population size of group i is denoted by

Ni.
17

• At any time t, following the vaccine rollout policy, the high- and low-risk groups can further be

divided into three subgroups each: those who have received k doses of the vaccine, where k= 0,1,2.

We refer to individuals in risk group i who have received k vaccine doses as type (i, k).

17 We thank the Associate Editor for proposing to use the age as the basis for determining the cutoff between two
risk groups. We note that under the cutoff of 65, the death rate of the elderly is more than 1,000% higher than
the younger group. In addition, the data regarding vaccine efficacy rate, hospitalization, transmission rate, etc. are
available for these two groups.
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• The structure of the compartmental model follows that of Keskinocak et al. (2020). At any

time, a each type (i, k) patient is in one of the following states: susceptible (S), exposed (E),

infectious-presymptomatic (IP ), infectious-asymptomatic (IA), infectious-symptomatic (IS), hos-

pitalized (H), recovered (R), or deceased (D). See Figure 1 in Section 7.1 for a graphical illustration.

• We assume that vaccination reduces susceptibility, infectiousness, probability of symptomatic

disease, probability of hospitalization and probability of death.

Infection. Similar to Bubar et al. (2020) and consistent with the notion of contact discussed by

Diekmann and Heesterbeek (2000), a susceptible person of type (i, k) faces a rate of exposure

expressed by

λEik = uiθk
∑

j∈{H,L}

cij

∑2

l=0 φl(ISjl + δP IPjl + δAIAjl)

Nj −Ωj

,

where ui is the probability of virus transmission given contact with an infectious individual and

cij is the expected number of contacts between a group i and a group j individual (per unit

time). The adjustment factors δP and δA reflects the lower infectiousness of presymptomatic and

asymptomatic patients. The parameters θk and φk reflect susceptibility (of an uninfected individual)

and infectiousness (of an infected individual) after receiving k doses of the vaccine (k ∈ {0,1,2}).

Naturally, 0≤ θ2 ≤ θ1 ≤ θ0 = 1 and 0≤ φ2 ≤ φ1 ≤ φ0 = 1, i.e., vaccination reduces susceptibility and

infectiousness. The variables IPjl, ISjl, and IAjl denote the type (j, l) individuals who are in the

infectious presymptomatic, symptomatic and asymptomatic states, respectively, and Ωj denotes the

cumulative number of deceased individuals in risk group j. We assume that hospitalized individuals

are isolated and do not transmit the virus to others. The term
∑2

l=0 φl(ISjl+δ
P IPjl+δ

AIAjl)

Nj−Ωj
can be

interpreted as the probability that a randomly-encountered group-j person is infectious.

Disease Severity. Let TE and TP be the average time that an infected patient spends in the

exposed and infected-presymptomatic states, respectively.

At the end of the presymptomatic state, a group i patient develops symptoms with probability

ηSi . In this case, the patient spends an average of T Si in the infected-symptomatic state, at the end

of which the patient can either become hospitalized (with probability ηHi ) or recovered.

To reflect how the fatality rate depends on the load of the healthcare system (e.g., ICU uti-

lization), we consider a two-step function of death rates. In particular, if the total number of

hospitalizations remains lower than a threshold K (effective capacity of the healthcare system), a

hospitalized group i patient transitions to the deceased state at the base probability of ηDi ; if the

number of hospitalized individuals exceeds K, the probability becomes κηDi , where κ> 1.

Similar to Keskinocak et al. (2020), we assume that all fatalities go through the hospitalized

(H) state, i.e., a patient cannot transition directly from infected-symptomatic (IS) to deceased
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(D). Thus, one can interpret the H state in our model as cases of severe disease that require

hospitalization, although not all patients in this state may be admitted to hospital in reality due

to factors such as access or capacity. Nevertheless, all such cases constitute the potential load on

the healthcare system and are thus counted toward the capacity threshold for higher death rates.

On the other hand, if a patient becomes asymptomatic (milder disease) following the presymp-

tomatic stage, the patient recovers after an average time of TA.

To reflect the vaccine’s effect on disease severity, we consider that group i patients who have

received the k-th dose will see their probabilities of symptomatic disease, hospitalization and death

(uncapacitated) drop to τkη
S
i , γkη

H
i and ρkη

D
i , respectively. Similarly, once the capacity threshold

for hospitalization is reached, the death probability rises to ρkκη
D
i .

Vaccination Rollout. The external vaccine supply process is specified as follows. The supply rate

y(t) = 0 for t∈ [0,50); thereafter, we have y(t) = y(0) +αt for t≥ 50, where y(0) = 0.001 (supply at

day 50 equals 0.1% of the population) and α= 0.02y(0) (2% increase in supply rate per day).

At time t, following the vaccination rates determined from the chosen rollout policy (as discussed

in Sections 4 to 6), v1(t) and v2(t) doses are made available for first and second doses. We assume

that these are proportionally allocated to the H and L groups; that is, the rate at which type (i, k)

patients are vaccinated is denoted by

vik(t) =

{
π · vk(t) if i=H

(1−π) · vk(t) if i=L
.

With a finite population and the probability of mortality, it is possible that the allocated vaccination

rates exceed the number of remaining eligible individuals (particularly in group H). In such case,

the excess supplies are reallocated to group L.

Consistent with practice, we assume that all individuals without symptoms (i.e., the S, E, IP ,

IA, and R compartments) have uniform probability of receiving the vaccine allocated to the risk

group i. As an approximation, we do not consider a minimum time gap between recovery and

eligibility to receive the vaccine.

Differential Equation Formulation. Based on the assumptions discussed above, the SEIR model

can be formulated as follows (suppressing (t) for brevity):

S′ik = −SikλEik +
vi,k−1Si,k−1

Si,k−1 +Ei,k−1 + IPi,k−1 + IAi,k−1 +Ri,k−1

− vikSik
Sik +Eik + IPi,k + IAi,k +Rik

(OA4)

E′ik = Sikλ
E
ik−Eik

1

TE
+

vi,k−1Ei,k−1

Si,k−1 +Ei,k−1 + IPi,k−1 + IAi,k−1 +Ri,k−1

− vikEik
Si,k +Ei,k + IPi,k + IAi,k +Ri,k

(OA5)
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IP ′ik = Eik
1

TE
− IPik

1

TP
+

vi,k−1IPi,k−1

Si,k−1 +Ei,k−1 + IPi,k−1 + IAi,k−1 +Ri,k−1

− vikIPik
Si,k +Ei,k + IPi,k + IAi,k +Ri,k

(OA6)

IA′ik = IPik
1− τkηSi
TP

− IAik
1

TA
+

vi,k−1IAi,k−1

Si,k−1 +Ei,k−1 + IPi,k−1 + IAi,k−1 +Ri,k−1

− vikIAik
Si,k +Ei,k + IPi,k + IAi,k +Ri,k

(OA7)

IS′ik = IPik
τkη

S
i

TP
− ISik

1

T S
(OA8)

H ′ik = ISik
γkη

H
i

T S
−Hik

1

TH
(OA9)

D′ik =

{
Hik

ρkη
D
i

TH if
∑

i,kHik ≤K
Hik

ρkκη
D
i

TH if
∑

i,kHik >K
(OA10)

Rik =


IAik

1
TA + ISik

1−γkηHi
TS +Hik

1−ρkηDi
TH

+
vi,k−1Ri,k−1

Si,k−1+Ei,k−1+IPi,k−1+IAi,k−1+Ri,k−1
− vikRik

Si,k+Ei,k+IPi,k+IAi,k+Ri,k
if
∑

i,kHik ≤K

IAik
1
TA + ISik

1−γkηHi
TS +Hik

1−ρkκηDi
TH

+
vi,k−1Ri,k−1

Si,k−1+Ei,k−1+IPi,k−1+IAi,k−1+Ri,k−1
− vikRik

Si,k+Ei,k+IPi,k+IAi,k+Ri,k
if
∑

i,kHik >K.

(OA11)

OA2.2. Parameter Calibration for the SEIR model

In Table OA1, we provide the rationale for the choice of parameter values used in the simulation

of our baseline case (Section 7.2).
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Table OA1 Parameter Values Used in the Baseline Case (Section 7.2)

Parameter Value Rationale

[NL,NH ] [87, 13]
In 2019, 13% of the U.S. population (over 20) was age 65 or above
(U.S. Census Bureau 2021). We normalize NL +NH = 100.

Eik(0)
0.01 for i=H,L and
k= 0; 0 otherwise

Eik(t) is the size of infectious group for type (i, k). We assume
the pandemic begins with 0.01% (1 in 10,000) of the population
becoming exposed in each of the two groups.

[uL, uH ] [0.84, 0.84]
ui is the base probability of virus transmission given contact. We
take the mid-point of values calibrated for above-20 age groups in
Bubar et al. (2021).

[
cLL cHL

cLH cHH

] [
0.841 0.071
0.258 0.318

] The number of group-j individuals contacted by an group-i indi-
vidual per day. We first regroup the U.S. contact matrix from
Prem et al. (2017) into the 20-64 (i= L) and 65+ (i=H) bins.
Then, the matrix is rescaled such that the reproductive coefficient
is 1.5.

[δP , δA] [0.48, 0.48]
Transmissibility adjustment factors in pre/asymptomatic states
(Keskinocak et al. 2020).

TE 4.6 days The average duration of exposed state (Keskinocak et al. 2020).

TP 0.5 days
The average duration of presymptomatic state (Keskinocak et al.
2020).

T S 2.9 days
The average duration of symptomatic state (Keskinocak et al.
2020).

TH 10.4 days The average duration of hospitalization (Keskinocak et al. 2020).

TA 1.93 days
The average duration of asymptomatic state, computed using the
symptomatic-asymptomatic duration ratio of 1.5 (Keskinocak et
al. 2020).

[ηSL, η
S
H ] [0.431, 0.653]

The probability of symptomatic given infection (from Israel’s
nationwide rollout, Haas et al. 2021).

[ηHL , η
H
H ] [0.104, 0.593]

The probability of hospitalization given symptomatic (from
Israel’s nationwide rollout, Haas et al. 2021).

[ηDL , η
D
H ] [0.043, 0.303]

The probability of death given hospitalization (from Israel’s
nationwide rollout, Haas et al. 2021).

K 0.108

On average, about 25% of hospitalized patients require ICU admis-
sion (CDC 2021). The U.S. ICU capacity is 0.027 beds per 100
population (Kaiser Family Foundation 2021), which translates
into 0.027/0.25 = 0.108 effective hospitalizations.

κ 1.92
When ICU capacity is reached, fatality rates increase by 92%
(Wilde et al. 2021).

[θ1, θ2]
[0.423, 0.047] for
Pfizer, [0.34, 0.34] for
Johnson & Johnson

One minus the first- and second-dose efficacy rates of the Pfizer
vaccine (from Israel’s nationwide rollout, Haas et al. 2021)

[φ1, φ2] [0.57, 0.57]
The Pfizer vaccine reduces transmissibility by 43% (from study
by Public Health England, Harris et al. 2021).

[τ1, τ2] [0.929, 0.884]
Reduction factors for the conditional probability of symptomatic
disease given infection (from Israel’s nationwide rollout, Haas et
al. 2021) with vaccination.

[γ1, γ2] [0.901 2.477]

Reduction factors for the conditional probability of hospitaliza-
tion given symptomatic disease (from Israel’s nationwide rollout,
Haas et al. 2021) with vaccination. The second dose increases the
conditional probability, despite reducing the overall probability of
hospitalization.

[ρ1, ρ2] [1.077, 1.799]

Reduction factors for the conditional probability of death given
hospitalization (from Israel’s nationwide rollout, Haas et al. 2021)
with vaccination. Vaccine increases the conditional probabilities,
despite reducing the overall probabilities of death.

π
1 (except in Sec-
tion 7.4, where its
value is 0.5)

The fraction of vaccine supply allocated to H group is 100%, fol-
lowing age-based prioritization (e.g., in the U.S. and U.K.). We
consider the effect of prioritization by considering allocating only
half of supplies to H group in in Section 7.4.
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