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Abstract. Every year, nearly 5,000 patients die while waiting for kidney transplants, and
yet an estimated 3,500 procured kidneys are discarded. Such a polarized coexistence of
dire scarcity and massive wastefulness has been mainly driven by insufficient pooling of
cadaveric kidneys across geographic regions. Although numerous policy initiatives are
aimed at broadening organ pooling, they rarely account for a key friction—efficient airline
transportation, ideally direct flights, is necessary for long-distance sharing, because of the
time-sensitive nature of kidney transplantation. Conceivably, transplant centers may be
reluctant to accept kidney offers from far-off locations without direct flights. In this paper,
we estimate the effect of the introduction of new airline routes on broader kidney sharing.
By merging the U.S. airline transportation and kidney transplantation data sets, we create
a unique sample tracking (1) the evolution of airline routes connecting all the U.S. airports
and (2) kidney transplants between donors and recipients connected by these airports. We
estimate the introduction of a new airline route increases the number of shared kidneys
by 7.3%. We also find a net increase in the total number of kidney transplants and a
decrease in the organ discard rate with the introduction of new routes. Notably, the post-
transplant survival rate remains largely unchanged, although average travel distance
increases after the introduction of new airline routes. Our results are robust to alternative
empirical specifications and have important implications for improving access to the U.S.
organ transplantation system.
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More than smartphones, more than television, more
than food, culture, or commerce, more even than
Twitter or Facebook, transportation permeates our
daily existence. In ways both glaringly obvious and
deeply hidden…

—Edward Humes (2016), in Door to Door: The Magnifi-
cent, Maddening, Mysterious World of Transportation

1. Introduction
Dire scarcity and massive wastefulness are the two
poles of the U.S. organ transplantation system, as evi-
denced by nearly 5,000 people who die every year
while waiting for kidney transplants and, perhaps
paradoxically, an estimated 3,500 procured kidneys
that are discarded (Aubert et al. 2019). Underlying
these poles are prevailing U.S. kidney allocation
policies that prioritize local matching and hinder

organ sharing across regions. Because of insufficient
pooling of cadaveric kidneys across regions that differ
in their organ supply and demand characteristics, the
availability of organs and therefore the waiting time
for transplants depend heavily on location.1 For exam-
ple, the average waiting time for a kidney transplant
is approximately five years in San Antonio, Texas,
and six months in Memphis, Tennessee. Pooling re-
sources through broadening organ sharing helps alle-
viate geographic disparities and improve access to or-
gan transplantation (Ata et al. 2017).

Consistent with the concept of pooling, policy-
makers have sought to expand organ sharing across
regions, mainly through reforming allocation policies.
Yet, such efforts rarely account for a key friction in
long-distance organ sharing—airline transportation. A
lack of direct flights makes transplant centers reluc-
tant to accept kidney offers from far-off locations. For
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example, in 2019, the United Network for Organ Sharing
(UNOS) proposed eliminating donation service areas
(DSAs) and regional boundaries used in the current sys-
tem and allocate kidneys using a 500-nautical-mile (ap-
proximately 575-mile) circle surrounding the donor
hospital (OPTN 2019a). The proposal drew heavy
criticism from a large number of organ procurement
organization (OPO) executives and transplant sur-
geons who expressed concerns in a public forum about
the implication of the proposal for increased reliance
on air transportation. A case in point, according to Dr.
John Friedewald of Northwestern University, is that
“Denver falls within the edge of Chicago’s 500 nm
radius but realistically is much closer than a number
of OPOs in between simply because of the variety of
daily flights between the two things” (OPTN 2019b).

Without accounting for the friction caused by airline
transportation, new kidney allocation policies may not
achieve as much pooling as they intend. In particular,
the organ transportation capacity provided by the com-
mercial airlines is a crucial link, because they are safer
and more affordable than private jets and charter
flights. As another comment for the 2019 UNOS propos-
al states, “the proposal has entirely failed to consider
the effect that limited access to direct flights will have
on cold ischemic time and the subsequent impact on
candidates’ access to transplantation” (OPTN 2019b).

Stated differently, the time-sensitive nature of organ
harvesting operations means direct air flights are often
required (Pullen 2019). How does the introduction of
new airline routes affect access to organ transporta-
tion?2 This seemingly simple research question has
yet to be rigorously examined in the literature and
gives rise to this paper.

Addressing this research question is challenging for
many reasons. A major challenge is to find an appro-
priate unit of analysis. On the one hand, an analysis at
the level of each donor-recipient pair would have
been ideal but is practically infeasible because we do
not observe the same donor-recipient pairs across dif-
ferent years. On the other hand, one may be tempted
to use the populations served by each pair of donor-
recipient OPOs as the unit of analysis. However, the
estimation is challenging because an OPO often serves
a large geographic area with multiple major airports.
Because most pairs of OPOs are well connected
throughout our study period, analyzing the effect of
the introduction of new airline routes is difficult.

To address this challenge, we use the pairs of airports
and the populations they serve as the units of analysis,
which allows us to estimate the aggregate effect of the
introduction of new airline routes in a salient manner
and generate implications for policymakers and health-
care executives. We estimate the effect of introducing
new airline routes on cross-regional kidney sharing. By
merging the U.S. airline transportation and organ

transplantation data sets, we create a unique sample
tracking both the evolution of airline routes connecting
all pairs of airports and kidney transplantation with
donors and recipients served by these airports. Thus,
our sample can be organized in terms of pairs of air-
ports across different years.

The primary outcome variable we examine is the
number of shared kidneys associated with each pair of
airports. Using a difference-in-differences design and
exploiting the staggered introduction of new airline
routes, we find kidney sharing between the popula-
tions served by a pair of airports significantly increases
with the introduction of an airline route connecting
these airports. Specifically, we estimate an introduction
of a new airline route increases the volume of kidney
sharing by 7.3%. Our result demonstrates the availabili-
ty of direct flights is an important driver of kidney
sharing across geographic regions.

As an illustrative example of our results, consider the
Baltimore-Washington International ThurgoodMarshall
Airport (BWI) and Dallas Love Field Airport (DAL)—
both hubs of Southwest Airlines—that were not con-
nected by a direct flight until 2014. Between 2002 and
2013, the average number of kidneys the donors served
by DAL shared with the recipients served by BWI was
1.7 per year. In 2014, immediately following the full ap-
peal of the Wright Amendment that had previously re-
stricted Southwest Airlines from flying beyond Texas
and its four surrounding states (Tierney 2014), a new
route was introduced between BWI and DAL. In the
same year, the number of shared kidneys jumped to
eight. As another example, in 2011, following the intro-
duction of a new airline route between Charleston Inter-
national Airport (CHS) and Nashville International Air-
port (BNA), the number of kidneys the donors served by
CHS shared with the recipients served as by BNA in-
creased from 3 in 2011 to 5 in 2012 and then to 12 in 2013.

An important concern about these observed effects
is the endogeneity of the introduction of new airline
routes. For instance, airports serving expanding econ-
omies and growing populations may be more likely to
have new routes. Conceivably, such regions may have
an increased number of kidney donors and recipients,
so kidney sharing may be more likely. In view of such
potential local shocks, our estimation does not com-
pare pairs of airport connected by direct flights with
those pairs not connected by direct flights. For the
same reason, we do not compare the number of
kidney shared between the populations served by a
pair of airports before and after the introduction of a
new airline route. Rather, our estimation identifies
pairs of airports without direct-flight options for the
entire study period and uses these pairs collectively as
a control group; the treatment group consists of
airport pairs with new airline routes introduced in
various years during the study period.
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We conduct further analyses to refine our key find-
ing that the introduction of new airline routes leads to
an increase in the volume of kidney sharing. We show
route introductions lead to a net increase in the total
number of kidney transplants and a decrease in the
organ discard rate. In addition, we show the quality
of kidney transplantation, as measured by posttrans-
plantation survival, does not decrease even as its
quantity increases, meaning expanded kidney sharing
does not worsen posttransplantation outcomes.

Our research helps inform organ transplantation pol-
icymakers by highlighting logistical issues threatening
to hold back the organ transplantation system that are
not ready to accommodate new allocation policies and
contributing to a better understanding of the flexibility
of the U.S. organ transplantation system. Our research
provides constructive support for policies reducing the
friction because of air transportation of kidneys, includ-
ing, for example, the establishment of a national trans-
portation system for organs shared across regions, a
policy initiative that has gained significant traction re-
cently (Aleccia 2020). Our findings also suggest that,
rather than eliminating DSAs and allocating kidneys
using a circle of a fixed size, policymakers may consid-
er adjusting DSAs from time to time using airline con-
nectivity as a factor of consideration.

2. Literature
Our paper contributes to a growing, mostly theoretic,
operations management (broadly defined) literature
on organ transplantation (Su and Zenios 2004, 2006;
Kong et al. 2010; Zhang 2010; Akan et al. 2012; Bertsimas
et al. 2013; Sandikçi et al. 2013; Gentry et al. 2015;
Ata et al. 2017, 2020; Kilambi and Mehrotra 2017;
Arikan et al. 2018; Ding et al. 2018; Dai et al. 2020;Wang
et al. 2020). This literature focuses on analyticallymodel-
ing the organ transplantation system, with several no-
table exceptions. Zhang (2010) takes an observational-
learning approach and shows allowing patients to
observe prior acceptances/rejections of organ offers
leads to herd behavior. Arikan et al. (2018) empirically
identify the drivers behind the geographic disparities in
deceased-donor organ procurement. They show an
intent to procure an organ plays an instrumental role in
the disparities, and such an intent depends on organ
quality, median waiting time, and competition among
transplant centers. Ata et al. (2020) structurally estimate
the effect of changing organ allocation policy by endo-
genizing transplant candidates’ acceptance behavior.
Wang et al. (2020) study the impact of new entry on
transplant centers’ risk-taking behavior and posttrans-
plantation outcomes. Different from these papers, ours
focuses on empirically estimating the impact of transpor-
tation, an important yet little-examined driver behind
geographic disparities in access to organ transplantation.

In doing so, our paper enriches the empirical founda-
tion of geographic disparities and informs related
policymaking.

In particular, the empirical estimation in our paper
complements the theoretic work by Ata et al. (2017),
who propose and analyze OrganJet, a transportation
solution that helps organ transplant candidates list in
multiple transplant centers. Their analytical and nu-
merical results show such a solution can significantly
improve geographic equity. Drawing from air trans-
portation and kidney transplantation data sets, our
paper provides a systematic, empirical understanding
of the impact of the introduction of new airline routes
on cross-regional kidney sharing.

Our paper also contributes to a vibrant literature in
economics, finance, and operations management that
empirically estimates the impact of transportation,
building on the theory that proximity facilitates com-
munication and oversight. Giroud (2013) finds the in-
troduction of new airline routes leads to an increase in
plant-level investment from corporate headquarters.
Bernstein et al. (2016) show reducing the travel time
between venture capitalists and their portfolio compa-
nies leads to an increase in innovation, as measured
by the number of patents and the number of citations
per patent. Bernard et al. (2019) exploit the opening of
a high-speed train line in Japan and show transporta-
tion connections create buyer-supplier linkages and
improve firm performance. Bray et al. (2019) demon-
strate supply chain proximity improves product quali-
ty and decreases the occurrence of defects. Ahuja et al.
(2020) show travel time affects air travelers’ service ex-
perience and establish it as a useful metric of service
quality. Catalini et al. (2020) and Dong et al. (2020) es-
timate the impact of travel time on cross-regional
teamwork. As a key departure from these papers that
focus on economic impacts, ours is the first paper to
characterize the health impact of transportation by es-
timating how the introduction of new airline routes
influences kidney sharing.

Our paper joins the healthcare operations manage-
ment literature that features a strength in analytical
modeling (Dai and Tayur 2020, Keskinocak and Savva
2020) and has become increasingly empirical in recent
years (KC et al. 2020, Terwiesch et al. 2020). Within
this literature, our paper speaks to a number of papers
related to the concept of pooling. Song et al. (2015)
show queue pooling may backfire in an emergency
department setting and that a dedicated queue can re-
duce the length of stay. Song et al. (2020) reveal nega-
tive patient-outcome impacts of capacity pooling in a
hospital network. Our paper shares the same spirit as
theirs by characterizing a key friction in the U.S. organ
transplantation system that hinders resource pooling
across various regions. Ramdas and Darzi (2017)
study shared medical appointments, in which a group
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of patients visit a physician at the same time. They
show such a pooling solution increases healthcare ca-
pacity and improves patient satisfaction. Our paper
advances this stream of literature by empirically iden-
tifying a friction that threatens to weaken the realized
benefit of kidney pooling. In doing so, our empirical
analysis is also relevant to the work by Kim et al.
(2020), who use laboratory experiments to identify
frictions in patient admission control due to health-
care providers’ behavioral biases. In addition, our
paper, by estimating how the efficiency of airline
routes—a logistics issue—influences decision making
related to organ sharing, relates to the work by Ibanez
and Toffel (2019), who show the scheduling of food-
safety inspection influences inspectors’ stringency.

At a conceptual level, our paper is relevant to the
operations management literature on flexibility. In a
seminal paper, Jordan and Graves (1995) study a
manufacturing environment in which the same facility
can manufacture different types of products. They
show most of the benefits of full flexibility, under
which all facilities can manufacture all types of prod-
ucts, can be reaped through partial flexibility. Other
operations management scholars (Van Mieghem and
Dada 1999, Graves and Tomlin 2003, Van Mieghem
2007, Hopp et al. 2010, Lu and Lu 2017) have studied
flexibility in a broad range of manufacturing and
service settings. In the case of organ transplantation,
flexibility can be thought of as a measure of the extent
to which limited organ resources can be pooled across
geographic regions. A more flexible organ transplan-
tation system is more likely to materialize the
intended benefit of policy initiatives aimed at expand-
ing the pooling of limited organ resources. Our paper
characterizes airline transportation as an important
driver of the flexibility of the organ transplantation
system, and thereby connecting health and logistics, a
key theme in the health and humanitarian systems lit-
erature (Keskinocak 2010).

3. Background and Data
In this section, we first provide a brief overview of
kidney transplantation and sharing in Section 3.1.
Next, in Section 3.2, we describe the data sets used in
estimating the effect of the introduction of new airline
routes on kidney sharing. Last, in Section 3.3, we de-
scribe how we prepare the data for our analysis.

3.1. Kidney Transplantation and
Cross-Regional Sharing

The U.S. organ transplantation system is organized as
11 geographic regions and operates as a collection of
58 DSAs, each of which is managed by an OPO that
is responsible for evaluating, procuring, and placing
deceased organs. Each OPO operates largely as an

“unchecked regional monopoly” in terms of organ
procurement and allocation (Bridgespan Group 2019,
p. 8). Despite multiple changes in organ allocation
policy in the past few decades, one fixture of the policy
is that it prioritizes proximity from the donor, and the
vast majority of deceased kidneys are allocated to local
recipients. Of more than 10,000 deceased kidney trans-
plants taking place in the United States each year, only
around 1,400 are shipped across geographic regions,
mostly by commercial flights as cargo (Aleccia 2020).

Organ transplantation is a time-sensitive operation.
As the time between when an organ is procured and
transplanted, commonly referred to as cold ischemia
time (CIT), increases, the risk of graft failure increases.
The maximum allowed CIT for kidney transplantation
is 24–36 hours, and an ideal CIT is substantially shorter.3

For this reason, when a transplant center receives an
offer of a procured kidney from a far-off location, CIT
becomes a factor of paramount importance. In addition,
transplant centers value the quality of kidneys, as
measured by the kidney donor profile index (KDPI); a
higher KDPI indicates a higher risk of graft failure and
hence a low quality. As Locke and Sellers (2019,
p. 2971) point out

[A transplant] center located in an area with limited or
no direct flights that receives an organ offer 12 hours
after cross clamp for a high KDPI kidney may decline
the offer knowing that the next available flight is not
for 12 more hours and that on arrival to the center the
kidney will already have more than 24 hours of CIT.
In contrast, the same high KDPI kidney offered some
12 hours after cross clamp may be accepted by a center
located in an area with ready access to direct flights re-
sulting in the kidneys arrival with < 24 hours of CIT.

Because of the absence of a national system for initiat-
ing and tracking such shipments and the fact that the
risk of transplant failure increases in the time after a
kidney has been procured, transplant surgeons and
OPO executives are cautious about accepting kidney
offers that require air transportation, especially when
direct-flight options are unavailable (Locke and Sellers
2019, Aleccia 2020). In October 2019, for example, a
donated kidney shipped from Florida to a recipient in
North Carolina missed a connection in Atlanta, lead-
ing to a near miss that gave surgeons “just 46 minutes
to spare” (Aleccia 2020). As another example, a trans-
plant surgeon, Matthew Mulloy, commented in re-
sponse to the aforementioned 2019 UNOS proposal
that his transplant center, despite being “a stone’s
throw from one of the country’s largest airports,” had
“lost the opportunity to transplant three kidneys that
were supposed to be sent to us by commercial air-
lines” (OPTN 2019b):

One organ was delayed due to weather and the next
available flight wasn’t till the next day. Another organ
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made it to the airport, but was never placed on the in-
tended flight. The third organ was mistakenly taken to
the wrong airport and missed the intended flight.

If each flight connection poses a risk to successful and
timely transportation, each additional flight connec-
tion will amplify that risk. Sensing an increased num-
ber of connections means kidneys are placed “in the
hands of entities who are in no way accountable for
their welfare” (OPTN 2019b), surgeons in transplant
centers may hesitate to accept offers from far-off loca-
tions requiring multiple flight connections (Locke and
Sellers 2019).

3.2. Data Description
To link airline transportation with kidney transplanta-
tion, we draw from the following data sources: (1) the
U.S. Bureau of Transportation Statistics’ T-100 Domestic
Segment Database, which provides monthly air carrier
traffic information, and (2) the data set from UNOS,
which provides individual-level data for all U.S. kidney
transplant candidates, donors, and recipients.

We use the period of 2002 to 2017 for the T-100 Do-
mestic Segment Database. The T-100 data set contains
monthly data for each airline and route, which include,
for example, the origin and destination airports, flight
duration, scheduled departures, performed depar-
tures, enplaned passengers, and aircraft type. It offers
a complete picture of whether direct-flight options
exist between any two airports and, if so, how many
flights took place in each given month. A unique fea-
ture of the T-100 data set is that it includes all the
flights that have taken place between any two airports
in the United States, because all the airline companies
operating flights in the United States are mandated by
law to file Form 41 with the U.S. Department of Trans-
portation and are subject to fines for misreporting.

The kidney transplant data set fromUNOS consists of
detailed patient-level records about all deceased donor
transplants performed in all U.S. hospitals between 2003
and 2017. The data set includes detailed kidney donor
features such as demographics, blood type, and cause of
death. The data set also includes detailed transplant can-
didate features such as demographics, blood type, and
dialysis status. (A small proportion of candidates in the
data setwere listed inmultiple transplant centers.) These
features allow us to control for the quality of donor
organs and health conditions of transplant candidates
when analyzing the number of shared kidneys. In addi-
tion, the data set includes the number of days a
transplant candidate survived after receiving a kidney
transplant. This posttransplant survival information helps
us analyze whether kidney sharing affects medical out-
comes. Finally, the data set includes information about
the donors’ and candidates’ hospitals, enabling us to
calculate the distance between a hospital and an airport.

3.3. Data Preparation
We focus on airline routes with the service class of
scheduled passenger/cargo services; all other service
classes are either nonscheduled (e.g., nonscheduled ci-
vilian passengers/cargo services, nonscheduled civil-
ian all cargo services) or for cargo only (e.g., scheduled
all cargo service). For each pair of airports, we calcu-
late the total number of flights in a year by summing
the number of flights performed by different airlines.4

Because the T-100 data set tracks all the flights operat-
ed by all airlines, we let the number of flights be zero
if no airline offers a flight between two airports. We
use a cut-off frequency (e.g., 180 flights per year) to de-
termine whether two airports are connected by an air-
line route.

We define the introduction of a new airline route as
a change in the number of flights from below to above
the cutoff frequency. Likewise, we define the exit of an
existing airline route as a change in the number of
flights from above to below the cutoff frequency. By
definition, an airport pair may have multiple introduc-
tions or exits of new airline routes during a given
period of time. In this study, we focus on the airport
pairs that experienced either (1) the introduction of
one new airline route or (2) no introduction or exit of
airline routes during the study period. In other words,
we exclude the airport pairs with multiple introduc-
tions of new airline routes or any exits of existing air-
line routes. This focus allows us to estimate the effect
of the introduction of one new airline route without
being confounded with multiple introductions or exits.

We calculate the straight-line distance between two
airports based on their longitudes and latitudes. Our
calculated distance is close to the actual flight distance
recorded in the data set for those airport pairs con-
nected by direct flights.5 Because driving or using a heli-
copter might be more convenient than flying a commer-
cial flight when the travel distance is sufficiently short,
we focus on the airport pairs with a flying distance of at
least 800 miles. As a robustness check, Section 5.3.10 re-
constructs the samples by considering alternative cutoff
distances (e.g., 700 and 900miles).

For each kidney donor in the kidney-transplantation
data set, we calculate the straight-line distance from
the donor’s hospital to all airports in the air transporta-
tion data set based on their longitudes and latitudes.
We designate the nearest airport as the donor’s airport
in our main analysis because the nearest airport is like-
ly the origin airport where the donated organs will be
transported from if a commercial flight is used. Similar-
ly, we calculate the straight-line distance from a trans-
plant candidate’s hospital to all airports and designate
the nearest airport as the candidate’s airport in our
main analysis. As a robustness check, in Section 5.3.7,
we consider scenarios in which the nearest airports are
bypassed and alternative airports are chosen.
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Using the UNOS data set, we calculate the total
number of kidney transplants involving a donor and a
recipient connected by an airport pair in each year.
Because our data set records all kidney transplants,
we set the number of shared kidneys as zero if the
data set shows no kidney shared between the popula-
tions served by an airport pair. For each airport pair,
we calculate the features of an origin airport using the
average features of all donors associated with the ori-
gin airport. Similarly, we calculate the features of a
destination airport, using the average features of all
candidates associated with the destination airport. We
exclude those airport pairs that never shared a kidney
during our study period or do not have complete in-
formation about donor or candidate features.

4. Econometric Model
To estimate the effect of the introduction of new air-
line routes on the sharing of cadeveric kidneys, we
note that whether a new airline route is introduced
may be determined endogenously. For example, two
airports serving booming metropolitan areas are likely
to have a new airline route. At the same time, these
airports may be more likely to be used for kidney
transportation, because growing economies may be
associated with a larger pool of donors and candi-
dates. Therefore, a direct comparison of airport pairs
with new airline routes and those without new airline
routes may be subject to confounding factors that
affect both airline routes and kidney sharing. Another
approach is to compare the number of kidneys shared
via two airports before and after the introduction of a
new airline route. Yet, this approach will lead to a
biased estimate of the treatment effect in the presence
of time trends of kidney sharing even in the absence
of a new airline route.

Taking advantage of the staggered introduction of
new airline routes, we isolate these confounding fac-
tors and obtain an unbiased estimate of the treatment
effect using a difference-in-differences approach with
multiple periods (i.e., with staggered treatment adop-
tion), which is prevalent in the literature (see Angrist
and Pischke 2008, p. 233–241 for details). The main
idea behind the difference-in-differences approach is
that if the treatment and control groups have experi-
enced similar time trends (i.e., the parallel-trends as-
sumption), we can compare the pre- and posttreatment
outcomes of both the treatment and control groups to
estimate the treatment effect. We refer to Ho et al.
(2017) and KC (2018) for comprehensive discussions of
the difference-in-differences approach; recent applica-
tions of this approach in the operations management
literature include Gallino and Moreno (2014), Hwang
et al. (2021), Li and Netessine (2020), Song et al. (2015),
and Wang (2020). In our study, the treatment group

consists of the airport pairs that initially did not have a
direct flight but were connected by new airline routes
introduced between 2002 and 2017; the control group
consists of the airport pairs that remain not directly
connected between 2002 and 2017.6 We check the par-
allel-trends assumption by empirically testing whether
the treatment and control groups are statistically sig-
nificantly different from each other in the pretreatment
period.

To describe the difference-in-differences approach,
we denote by SharedVolumeijt the total number of
kidneys that are harvested from the donors associated
with airport i and used by the candidates associated
with airport j in year t. We differentiate the origin and
destination of an airport pair, because (1) this ap-
proach allows us to explicitly control for the features
of the origin and destination airports, (2) the volume
of shared kidneys and the frequency of flights from
airport i to airport j may be different from those from
airport j to airport i, and (3) the effect of the introduc-
tion of airline routes may be direction dependent for
the same pair of airports.

As described in Section 3.3, we calculate SharedVolu-
meijt by first identifying the set of donors whose near-
est airport is i and the set of candidates whose nearest
airport is j, and then counting the total number of kid-
neys shared from donors residing near airport i to re-
cipients residing near airport j in year t. We use the
airports that are the nearest to the donors and candi-
dates because they are the most likely to be used to
transport kidneys. We acknowledge that the nearest
airports are not always used in reality, especially
when (1) travel distance is short such that driving is
more preferable, or (2) a more distant airport offers a
better connectivity (i.e., existence of a direct flight).
We consider those scenarios in Section 5.3.7.

Our independent variable of primary interest is the
treatment dummy, DirectFlightijt, which is equal to
one if airports i and j (1) did not have a direct flight
before 2002 and (2) had direct-flight options starting
in year t (between 2002 and 2017). Our sample tracks
the flight frequency between two airports in a year. In
our main analysis, we use 180 per year (i.e., once
every two days) as a cutoff frequency to determine
whether a pair of airports has a direct-flight option.
Section 5.3.10 presents a robustness check with alter-
native cut-off frequencies for the determination.

We are particularly interested in the relationship be-
tween the treatment dummy,DirectFlightijt, and the de-
pendent variable, SharedVolumeijt, which measures the
average effect of a new airline route on the volume of
shared kidneys. A positive relationship would indicate
introducing new airline routes increases the number of
shared kidneys, and a negative coefficient would indi-
cate otherwise. We establish the causal relationship us-
ing the difference-in-differences approach.
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To control for the features (denoted by Featuresijt) of
a pair of airports over time, we include a broad range
of donor features (e.g., demographics, height/weight,
creatinine level, blood type, hypertension, cause of
death, and expanded criteria donor) to control for the
quality of donor kidneys associated with the origin
airport and candidate features (e.g., demographics,
height/weight, blood type, diabetes, dialysis status
and duration) to control for the health conditions of
transplant candidates associated with the destination
airport. We calculate Featuresijt by first identifying the
set of donors whose nearest airport is i and the set of
candidates whose nearest airport is j. We then calcu-
late the average features of the donors and candidates
associated with the origin and destination airports, re-
spectively. The features of an airport pair may be time
variant, because the sets of donors and candidates
change over time.

Finally, we use Airportsij to denote a vector of air-
port-pair fixed effects that control for time-invariant
features of origin and destination airports, Yeart to de-
note a vector of year fixed effects that control for
changes in the average number of kidneys shared
over the years and εijt to denote an idiosyncratic error.
The relationship between the dependent and indepen-
dent variables is

ln(SharedVolumeijt) ! α0 + α1DirectFlightijt

+ α2Featuresijt + α3Airportsij

+ α4Yeart + εijt:

To address one potential concern that some of the
features may change because of the treatment, we con-
sider four different models in which Featuresijt in-
cludes (1) no candidate or donor features, (2) only can-
didate features (denoted by CandidateFeaturesijt), (3)
only donor features (denoted by DonorFeaturesijt), and
(4) both candidate and donor features. For each cate-
gorical variable, we first identify all candidates (or do-
nors) served by each airport and then calculate the
percentage of candidates belonging to the correspond-
ing category (e.g., blood type or race).

We use the logarithm of the shared kidney volume
as the dependent variable because the distribution of
the shared volume is right skewed. The coefficient α1
can thus be interpreted as the percentage increase in
the shared volume after the introduction of a direct
flight. We do not explicitly include the geographic dis-
tance between two airports and whether two airports
belong to the same geographic regions as specified by
UNOS, because they are captured by the airport-pair
fixed effects. We cluster robust standard errors by air-
port pair because the errors associated with the same
pair over different years might correlate with each
other.

5. Results and Robustness Checks
In this section, we first describe in Section 5.1 the events
used in our main analysis and compare the features of
treatment and control groups. Then, in Section 5.2, we
present our results from the difference-in-differences
model; we also modify the difference-in-differences
model by including several pre- and posttreatment
dummies to check the parallel-trends assumption and
analyze how the effect of the introduction of new air-
line routes changes over time. Next, in Section 5.3, we
perform extensive robustness checks to explore the sen-
sitivity of our results.

5.1. Summary of Events and Airport-Pair Features
Our main analysis has a treatment group of 61 airport
pairs and a control group of 513 airport pairs over a
period of 16 years. Figure 1 illustrates the airport pairs
in the treatment group. Our treatment group covers a
broad range of airports across the United States. Inter-
estingly, a number of airport pairs in the treatment
group share the same origin or destination airport. A
detailed investigation of the events reveals the over-
lapping of origin or destination airports is because
an airline usually launches multiple new routes from
its hub airports. For example, Southwest Airlines
launched multiple routes from Dallas Love Field
(DAL) to multiple destinations after the repeal of the
Wright Amendment in October 2014 (Tierney 2014).

Table A1 in the online appendix provides details
(e.g., airport codes and locations and the year and
month when a direct flight was introduced) about the
treatment group. The year of 2015 witnessed the largest
number of introductions of new airline routes (13 air-
port pairs), followed by 2014, 2012, and 2005, each of
which has eight introductions. Because kidney sharing
(and therefore an airport pair) is direction specific and
we exclude the airport pairs that never shared a kidney
during our study period, for the same pair of airports,
our treatment group may include a route of one direc-
tion (e.g., from DAL to BWI) but not of the other direc-
tion (e.g., from BWI to DAL). These unbalanced pairs
are unlikely to bias our results, because we apply the
same exclusion criteria to both the treatment and con-
trol groups. Later, in Section 5.3.6, we use balanced air-
port pairs that include both directions to reestimate the
effect of the introduction of new airline routes.

We summarize in Table 1 the number of shared
kidneys and features of candidates and donors associ-
ated with the airport pairs in the treatment and
control groups. During our study period, the average
number of kidneys shared per year is 0.12 for the air-
port pairs that were never treated and 0.21 for the air-
port pairs that were. The average number of shared
kidneys is relatively small because our data include
airport pairs that did not share a kidney in certain
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years. The larger magnitude of the number of kidneys
shared in the treatment group does not necessarily
mean the treatment groups are different prior to the
introduction of new airline routes for two reasons.
First, these aggregated results are calculated over 16
years, which includes the periods both before and after
each introduction. Second, these results do not control
for the features of the candidates and donors, which
might correlate with the number of shared kidneys.

From Table 1, we observe that the treatment and
control groups are similar along many dimensions of
candidate and donor features. For example, in both
groups, the percentage of male candidates is 40% and
the average age of donors is 39. However, some notice-
able differences exist between these two groups along
some other dimensions. For example, the control
group has a higher percentage of white candidates/
donors and a lower percentage of Hispanic candi-
dates/donors. These summary statistics seem to indi-
cate the treatment and control groups are not the same.
A selection issue may arise if the differences between
the treatment and control groups affect both the num-
ber of shared kidneys and the introduction of new air-
line routes. Fortunately, the difference-in-differences
approach does not require the treatment and control
groups to share the same characteristics along all di-
mensions of candidate and donor features. It only re-
quires that, in the absence of treatment (i.e., introduc-
tions of new airline routes), the treatment and control
groups experience parallel trends in the outcome vari-
able (i.e., number of shared kidneys). This assumption
cannot be directly verified, because we do not observe
the trend of the treatment group if it did not receive

the treatment. Next, we examine the trends prior to the
event of interest similar to other studies using a differ-
ence-in-differences design (Roberts andWhited 2013).

5.2. Results from the Difference-in-
Differences Models

We present the results from our difference-in-differences
model in Table 2, where columns (1)–(4) correspond to
the four econometric models described in the last sub-
section. Note the number of observations for each mod-
el is (61 treatment pairs+ 513 control pairs) × 16 years !
9, 184. The last column summarizes the results from the
full model that includes both candidate and donor fea-
tures. We observe that the coefficient of DirectFlight is
positive and significant at the 5% significance level.
This result indicates the introduction of a new airline
route increases the number of shared kidneys. Because
we use the logarithm of shared volume as the depen-
dent variable, a coefficient of 0.075 means an estimated
7.5% increase after the introduction of a direct flight.
Columns (1)–(3) summarize the results from the mod-
els that exclude candidate features, donor features, or
both. By comparing these columns with column (4), we
see the coefficients of DirectFlight share the same signif-
icance level and nearly identical magnitudes. These re-
sults demonstrate our estimation of the treatment effect
is consistent across different model specifications. They
also rule out the possibility that introduction of a direct
flight changes candidate or donor features.

The results from our main difference-in-differences
model rely on the assumption that the treatment and
control groups share parallel trends before the treat-
ment. In addition, they do not indicate how the effect

Figure 1. (Color online) NewAirline Routes in the Treatment Group
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of the introduction of new airline routes changes over
time. To formally check the parallel-trends assump-
tion and analyze the treatment effect heterogeneity
over time, we follow Angrist and Pischke (2008) by
using a modified difference-in-differences model:

ln(SharedVolumeijt)

! α0 +
∑3

τ!0
β−τDirectFlightij,t−τ +

∑3

τ!1
β+τDirectFlightij,t+τ

+α2Featuresijt+α3Airportsij +α4Yeart + εijt,

where the sums on the right-hand side allow for three
lags (β−1, β−2, and β−3) or posttreatment effects and
three leads (β+1, β+2, and β+3) or pretreatment effects.
A statistically significant pretreatment effects would
indicate the treatment and control groups have differ-
ent trends before the introduction of a new airline
route. Comparing the posttreatment effects enables us
to understand how the effect of the introduction of
new airline routes might change over time.

The results from themodified difference-in-differences
model with pre- and posttreatment dummies are

Table 1. Definition and Summary of the Dependent Variable and Features of Candidates and Donors

Variable Definition

Never treated Ever treated

Mean
Standard
deviation Mean

Standard
deviation

Dependent variable
SharedVolume Number of kidneys shared in a year 0.12 0.39 0.21 0.60

Candidate features
CandiAge Candidate’s age in years at listing 49 4 47 5
CandiHeight Candidate’s height in centimeters at listing 169 3 168 5
CandiWeight Candidate’s weight in kilograms at listing 81 5 79 6
CandiMale Candidate’s gender is male 0.40 0.05 0.40 0.04
CandiRaceWhite Candidate’s race is white 0.56 0.22 0.47 0.20
CandiRaceBlack Candidate’s race is black 0.24 0.19 0.24 0.16
CandiRaceHispanic Candidate’s race is Hispanic 0.14 0.19 0.22 0.19
CandiBloodTypeA Candidate’s blood type is A 0.34 0.05 0.33 0.04
CandiBloodTypeB Candidate’s blood type is B 0.14 0.04 0.14 0.03
CandiBloodTypeO Candidate’s blood type is O 0.48 0.06 0.50 0.05
CandiDiabetesYes Candidate has diabetes 0.45 0.09 0.42 0.10
CandiDiabetesUnknown Candidate’s diabetes status is unknown 0.00 0.02 0.01 0.01
CandiDialysisYes Candidate is on dialysis 0.72 0.12 0.75 0.08
CandiDialysisYear Candidate’s dialysis duration in years 1.40 0.45 1.49 0.34

Donor features
DonorAge Donor’s age in years at listing 39 6 39 6
DonorHeight Donor’s height in centimeters at listing 167 6 166 6
DonorWeight Donor’s weight in kilograms at listing 77 7 76 7
DonorCreatine Donor’s serum creatine in milligrams per deciliter 1.33 0.40 1.47 0.44
DonorGenderMale Donor’s gender is male 0.41 0.13 0.39 0.12
DonorRaceWhite Donor’s race is white 0.69 0.21 0.57 0.22
DonorRaceBlack Donor’s race is black 0.12 0.13 0.19 0.14
DonorRaceHispanic Donor’s race is Hispanic 0.15 0.17 0.20 0.16
DonorBloodTypeA Donor’s blood type is A 0.37 0.13 0.35 0.12
DonorBloodTypeB Donor’s blood type is B 0.12 0.09 0.11 0.06
DonorBloodTypeO Donor’s blood type is O 0.48 0.14 0.50 0.12
DonorDiabetesYes Donor has diabetes 0.09 0.09 0.11 0.09
DonorDiabetesUnknown Donor’s diabetes status is unknown 0.00 0.01 0.01 0.02
DonorHypertensionYes Donor has hypertension 0.30 0.14 0.33 0.14
DonorHypertensionUnknown Donor’s hypertension status is unknown 0.01 0.02 0.01 0.01
DonorHepatitisCYes Donor has hepatitis C 0.04 0.06 0.04 0.04
DonorHepatitisCUnknown Donor’s hepatitis C status is unknown 0.00 0.01 0.00 0.01
DonorCodAnoxia Donor’s cause of death is anoxia 0.24 0.16 0.26 0.18
DonorCodCVS Donor’s cause of death is cardiovascular disease or stroke 0.35 0.16 0.36 0.14
DonorCodTrauma Donor’s cause of death is trauma 0.38 0.16 0.35 0.15
DonorECDYes Expanded criteria donor 0.21 0.13 0.23 0.13

Number of observations 8,208 976

Notes. We include each feature for all donors from the origin airport area and for all patients in the destination airport area in each year as control
variables. The expanded criteria donor (ECD) is defined as a donor who is above 60, or a donor who is above 50 with two of the following: a his-
tory of high blood pressure, a creatinine level greater than or equal to 1.5 mg/dL, or whose death is caused by stroke (see https://health.ucdavis.
edu/transplant/nonlivingdonors/expanded-criteria-donors.html for details).
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presented in Table 3 and illustrated in Figure 2. In
Table 3, the “3 and more years after” dummy (corre-
sponding to “3+” in the x-axis of Figure 2) captures the
accumulative effect (i.e., the average effect three or
more years after the treatment), whereas “1 year after”
and “2 year after” dummies (corresponding to “1” and
“2” in the x-axis of Figure 2) are not accumulative. For
example, if the treatment is in year 2010, “3 and more
years after” indicates the average effect over 2013–2017,
“1 year after” indicates the average effect in 2011, and
“2 years after” indicates the average effect in 2012. Sev-
eral observations can be made. First, the coefficients of
all three pretreatment dummies are of small magnitude
and are not statistically different from zero in all four
models. These results suggest the treatment and control
groups are not statistically different from each other af-
ter controlling for the airport-pair and year fixed effects.
Second, the coefficients of DirectFlightYrTreat are of a
large magnitude and are statistically significant at the
10% significance level. These results suggest the

introduction of new airline routes has an immediate
effect, possibly because airlines run marketing cam-
paigns and promotions, and, as a results, a substantial
portion of the populations are aware of such new air-
line routes on their launching. However, the effect di-
minishes for a while (as indicated by the coefficients of
DirectFlight1YrAft and DirectFlight2YrsAft) before it be-
comes significant again (as indicated by the coeffi-
cients of DirectFlight3YrsAft). These results indicate the
long-term effect is significant, although transplant
centers may need time to become aware of and take
up the new route for kidney transportation. Finally,
the statistical significance of the coefficients of
DirectFlight3YrsAft addresses potential concerns that the
insignificance of pretreatment dummies is caused by a
lack of statistical power.

5.3. Robustness Checks
We now perform extensive robustness checks to ana-
lyze the sensitivity of our results. In the first two

Table 2. Results from the Difference-in-Differences Model

(1) (2) (3) (4)

Coefficient
Standard
error Coefficient

Standard
error Coefficient

Standard
error Coefficient

Standard
error

Direct flight 0.073** 0.030 0.074** 0.003 0.073** 0.030 0.075** 0.030

Candidate features Included Included
Donor features Included Included
Airport-pair fixed effects Included Included Included Included
Year fixed effects Included Included Included Included
Number of observations 9,184 9,184 9,184 9,184
Adjusted R2 0.062 0.063 0.061 0.063

Note. Robust standard errors clustered by airport pair.
***p < 0.01; **p < 0.05; *p < 0.1.

Table 3. Results from the Difference-in-Differences Model (with Pre- and Posttreatment Dummies)

(1) (2) (3) (4)

Coefficient
Standard
error Coefficient

Standard
error Coefficient

Standard
error Coefficient

Standard
error

Direct flight
3 years before 0.013 0.044 0.011 0.044 0.013 0.044 0.010 0.044
2 years before −0.021 0.041 −0.022 0.041 −0.022 0.041 −0.023 0.041
1 year before 0.018 0.040 0.015 0.040 0.017 0.041 0.014 0.040
Year of treatment 0.089* 0.053 0.090* 0.053 0.087* 0.053 0.088* 0.053
1 year after 0.050 0.041 0.050 0.041 0.050 0.041 0.050 0.041
2 years after 0.050 0.046 0.050 0.046 0.049 0.046 0.050 0.046
3 and more years after 0.095*** 0.035 0.098*** 0.034 0.093*** 0.035 0.096*** 0.034

Candidate features Included Included
Donor features Included Included
Airport-pair fixed effects Included Included Included Included
Year fixed effects Included Included Included Included
Number of observations 9,184 9,184 9,184 9,184
Adjusted R2 0.061 0.063 0.061 0.062

Note. Robust standard errors clustered by airport pair.
***p < 0.01; **p < 0.05; *p < 0.1.
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robustness checks, Sections 5.3.1 and 5.3.2 address po-
tential issues of selection based on observable and un-
observable time-variant features, respectively. Next,
Section 5.3.3 estimates the effect of new airline routes at
the individual case level. Section 5.3.4 incorporates
different aspects affecting air travel, including airport/
air-space congestion, extreme weather, and time of day
and day of the week. The next two robustness checks,
presented in Sections 5.3.5 and 5.3.6, use balanced pan-
el and balanced airport data, respectively, to address
potential concerns that the data used in the main analy-
sis might not be balanced. Then, Sections 5.3.7 and 5.3.8
discuss whether our results might be driven by the
nearest airport, one particular airport pair, or a group
of airports that share the same origin or destination. Fi-
nally, Sections 5.3.9 and 5.3.10 use an alternative de-
pendent variable, cutoff distance, and frequency. The
detailed results from all these robustness checks are rel-
egated to Section OA.2 of the online appendix.

5.3.1. Propensity Score Matching. As Section 5.1
states, the treatment and control groups are not the
same, giving rise to a potential concern that the differ-
ences in candidate or donor features affect our results.
We address this concern using a matching method to
select from the control group a subset of airport pairs
that resemble the airport pairs in the treatment groups
in terms of candidate and donor features, as well as
the shared volume. In particular, we follow existing
studies to use the propensity score matching method
to reconstruct the treatment and control groups.

To describe this matching method, we denote by Fea-
turesij, which is the pretreatment features of airports i
and j, and DirectFlightij, which is a dummy that indi-
cates whether airports i and j had a direct route intro-
duced during our study period. The propensity score is

calculated as e(x) ! Prob(DirectFlightij ! 1 |Featuresij ! X),
where X denotes the underlying features. The intuition
behind this matching method is that the treatment
and control groups will have similar underlying fea-
tures if they have similar propensity scores. A major
advantage of propensity score matching is that it al-
lows us to match the treatment and control groups
based on a single propensity score instead of a large
number of features.

To apply the propensity score matching method, we
first calculate the average outcome and features be-
tween 2000 and 2001 (i.e., pretreatment period) for
each airport pair. We then use a probit model to esti-
mate the propensity scores. Finally, we use a caliper of
0.15 to select matched airport pairs in the treatment
and control groups. This approach leads to 51 airport
pairs in the treatment group and 51 airport pairs in the
control group.7 Table B1 in the online appendix sum-
marizes the average outcome and features of the con-
trol (i.e., column Never Treated) and treatment (i.e.,
column Ever Treated) groups.

We use a t test to check whether the two groups have
similar outcomes and features before the treatment. The
last column of Table B1 in the online appendix shows all
p values are larger than 0.05, meaning the differences
between the treatment and control groups are not signif-
icant at the 5% significance level. In particular, we ob-
serve the difference between these groups in the fraction
of White and Hispanic candidates/donors is significant
in the unmatched sample but insignificant in the
matched sample.

Table B12 in the online appendix summarizes the re-
sults based on the matched samples. The total number
of observations is (51 treatment pairs+ 51 control pairs) ×
16 years ! 1, 632. From Table B12 in the online appen-
dix, we observe the coefficients of DirectFlight are
positive and significant across all four models. These

Figure 2. (Color online) Pre- and Posttreatment Effects of Introduction of NewAirline Routes
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coefficients are not statistically significantly different
from the results we obtain from the main analysis,
mainly because the treatment and control groups are
similar alongmany dimensions of the features.

5.3.2. Potential Selection Issues. A challenge of using
observational data for causal inference is that the treat-
ment is not randomly assigned. A selection issue arises
if some underlying features affect both the treatment
assignment and potential outcomes. The propensity
score matching approach addresses potential issues of
selection based on observable features, because it
makes the treatment and control groups look similar
in terms of the observable features. The airport-pair
fixed effects in the difference-in-differences model cap-
ture all time-invariant unobservable features. Never-
theless, remaining selection issues might arise in the
presence of some time-variant features that affect both
the treatment assignment and potential outcomes.

To address such potential selection issues, we follow
the strategy in the extant literature (Brot-Goldberg et al.
2017, Bapna et al. 2018, Sun et al. 2020) by using the air-
port pairs with existing direct flights as a new control
group. The intuition is that because each pair of
airports in both the treatment and control groups
were eventually connected by a direct airline route,
this approach could potentially capture some of the
time-variant features that affect the decisions to intro-
duce a new route. Our newly defined control group
consists of 149 airport pairs. The total number of obser-
vations in this robustness check is (61 treatment
pairs+ 149 control pairs) × 16 years ! 3, 360. Table B3 in
the online appendix shows the results from this ro-
bustness check. Additionally, we estimate the effect of
introducing new airline routes using both controls, in-
cluding 513 airport pairs without direct airline routes
and 149 airport pairs with existing direct flights, and
present our results in Table B4 in the online appendix.

In Tables B3 and B4 in the online appendix, we ob-
serve that the coefficients of DirectFlight are positive
and significantly different from zero in all four models.
These results are not significantly different from those
in our main analysis, suggesting selection issues relat-
ed to time-variant unobservable features are not a ma-
jor concern in this study.

5.3.3. Individual-Level Analysis. To understandwheth-
er introducing new airline routes increases the likeli-
hood of of accepting an offer from the donor hospital,
we perform individual-level analyses by changing the
unit of analysis from airport pairs to organ offers. Our
new dependent variable is a dummy (denoted by Ac-
ceptijt) indicating whether candidate i accepts an offer
from donor j in year t. Our independent variables are
(1) individual characteristics of both the candidate (de-
noted by Candidateit) and donor (denoted by Donorj) at

the time of the offer, (2) the number of offers declined
(denoted by Declineij) by candidate i prior to receiving
an offer from donor j, (3) a treatment dummy (denoted
by DirectFlightijt) indicating the introduction of a new
airline route that links candidate i and donor j, and (4)
fixed effect of airport pairs (denoted by Airportij) and
years (denoted by Yeart).8

To empirically estimate the effect of the introduction
of new airline routes on kidney acceptance/rejection,
we use a link function (denoted by F(·)) to describe
the relationship between the dependent and indepen-
dent variables: F(Acceptijt) ! α0 +α1DirectFlightijt+
α2Candidateit + α3Donorj + α4Declineij + α5Airportsij+
α6Yeart + εijt. Two commonly used link functions are
the probit and logit models. In this study, we use the
probit model and let F(·) !Φ−1(·).9 Table B5 in the on-
line appendix summarizes the results from the probit
model estimated based on the organ-offer data set,
which records the decision of a candidate upon receiv-
ing an offer.10 We observe that the coefficients of Di-
rectFlight are positive and significantly different from
zero across all four models. These results suggest intro-
ducing new airline routes increases the likelihood of ac-
cepting an offer. The magnitudes of the results from
this robustness check are different from those in the
main analysis because we use different econometric
models (i.e., probit versus linear models) and units of
analyses (i.e., airport versus donor-candidate pairs).

5.3.4. Practical Considerations Affecting Air Travel. A
number of practical considerations, such as airport/
air space congestion, weather, and flight timing, play
important roles in air transportation. We construct
several measures of those factors and conduct relevant
robustness checks. First, to measure airport/air space
congestion, we follow Arikan et al. (2013) and Desh-
pande and Arikan (2012) by constructing an aggregate
on-time performance measure for each airport in each
year using the Department of Transportation (DOT)
Airline On-Time Performance data set.11 For a given
airport and year, we calculate the aggregate departure
(arrival) delay rate by dividing the total number of de-
layed flights departing from (arriving at) the airport
by the total number of flights departing from (arriving
at) the airport in the year. Second, to measure extreme
weather conditions, we construct an aggregate ex-
treme weather index for each airport in each year us-
ing the U.S. Climate Extremes Index (CEI) data set
from the National Oceanic and Atmospheric Adminis-
tration (NOAA).12 NOAA has developed a regional
CEI, which provides data for all regions of the contig-
uous United States. For our purpose, we map all air-
ports to those nine regions and calculate a weighted
average of seasonal CEI for each airport in each year,
where the weight is the fraction of flights in each sea-
son. Third, to incorporate the impact of time of day
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and day of the week, for each airport in each year, we
calculate the fraction of flights scheduled to depart or
arrive during each hour of the day and on each day of
the week using the DOT Airline On-Time Perfor-
mance data set. Tables B6 to B9 in the online appendix
in the online appendix show our results are robust to
including those control variables.

5.3.5. Balanced Panel Data. In the main analysis, we
include the airport pairs that experienced an introduc-
tion of new airline routes in any year between 2002
and 2017. The panel data seem unbalanced in the
sense that the airport pairs that experienced route in-
troductions earlier (e.g., 2002) have fewer pretreat-
ment periods, whereas the airport pairs that experi-
enced route introductions later (e.g., 2017) have fewer
posttreatment periods in our data. To address this
concern, we redefine the treatment group as the air-
port pairs that experienced new route introductions
between 2005 and 2014. The resulting panel data are
more balanced, because all airport pairs in the treat-
ment group have at least three pretreatment periods
and three posttreatment periods.

Table B10 in the online appendix summarizes the re-
sults based on the sample created using the balanced
panel data. The number of airport pairs is 34 in the
treatment group and 513 in the control group, so the
total number of observations is (34 treatment pairs+
513 control pairs) × 16 years ! 5, 752. The number of air-
port pairs in the treatment group is smaller than in the
main analysis, because we exclude pairs that experi-
enced an introduction of new airline routes between
2002 and 2014 and between 2015 and 2017. Table B10
in the online appendix shows the coefficients of Direct-
Flight are positive and significantly different from zero
in all four models. These coefficients are not statistical-
ly significantly different from the results from the
main analysis. Thus, our results are robust to the seem-
ingly unbalanced nature of the data.

5.3.6. Balanced Airport Pairs. As stated in Section 5.2,
the airport pairs defined in our study are direction
specific, and we exclude the airport pairs that never
shared a kidney during our study period. The exclu-
sion criteria might raise a concern that the airport
pairs used in this study are unbalanced because we in-
clude two airports with flights in one direction but not
the other. To address this concern, we reconstruct the
control and treatment groups by including two air-
ports with flights in both directions, as long as kid-
neys were shared between these airports. More specif-
ically, for a pair of airports (i, j), we include both
Airportsij and Airportsji if a year t exists such that
max{ShareVolumeijt,ShareVolumejit} ≥ 1. However, we
exclude the airport pairs that do not have complete in-
formation about the features of donors or candidates.

Table B11 in the online appendix summarizes the re-
sults based on the balanced airport-pairs data. The
number of airport pairs is 68 in the treatment group
and 608 in the control group, so the total number of
observations is (68 treatment pairs + 608 control pairs) ×
16 years ! 10, 816. The number of observations in this
robustness check is different from that in the main
analysis, because we (1) include additional airport pairs
to make airport pairs balanced and (2) exclude existing
airport pairs caused by incomplete information about
the features of donors or candidates. From Table B11 in
the online appendix, we see the coefficients of Direct-
Flight are positive and significantly different from zero
in all four models. These coefficients are not statistically
significantly different from the results we obtain from
the main analysis. Our results are robust to the unbal-
anced nature of airport pairs, because we perform an
apples-to-apples comparison between the treatment
and control groups.

5.3.7. Alternative Nearby Airports. In our main analy-
sis, we assume shared kidneys are transported using
the pair of airports that are the nearest to the donors
and candidates, respectively. This assumption is con-
sistent with the view of the organ transplantation
community (OPTN 2019b). Yet, one might argue that
the nearest airport may not always be chosen if an al-
ternative can offer better connectivity. For example, a
transplant center that intends to ship a kidney from
Lansing, Michigan, to Dallas, Texas, might sometimes
bypass the Capital Region International Airport
(LAN), which is located 3 miles northwest of down-
town Lansing, to use the Detroit Metropolitan Wayne
County Airport (DTA), because the latter airport has
direct flights to Dallas.

To capture such possibilities, we consider alterna-
tive airports by first calculating the distance from a
donor or candidate to all airports, and identify the k
nearest airports for the donor (designated as donor
airport set) and the candidate (designated as candi-
date airport set), respectively.13 We then analyze the
connectivity (i.e., existence of a direct flight) of each
airport in the donor airport set to any airport in the
candidate airport set and calculate the extra travel dis-
tance should the nearest airports be bypassed. Finally,
we identify two airports with the best connectivity
and the shortest extra distance for kidney transporta-
tion. We do not bypass the nearest airport if the sec-
ond nearest airport does not offer better connectivity
or incurs too much extra distance.

Table B12 in the online appendix summarizes the re-
sults based on the scenario in which (1) both the donor
and candidate have a set of two airports and (2) the sec-
ond nearest airport incurs an extra travel distance of no
more than 50 miles. The number of airport pairs is 49 in
the treatment group and 376 in the control group, so
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the total number of observations is (49 treatment pairs+
376 control pairs) × 16 years ! 6, 800. The number of
observations in this robustness check is smaller than
that in the main analysis, because certain airport pairs
in both the treatment and control groups are bypassed
and therefore excluded from this robustness check. We
observe from Table B12 in the online appendix that the
coefficients of DirectFlight are positive and significant
across all four models. These coefficients are of larger
magnitude (though the difference is not statistically sig-
nificant) than those in the main analysis.

5.3.8. Leave-One-Out Analyses. As Section 5.1 de-
scribes, our treatment group includes 61 airport pairs
with direct flights introduced between 2002 and 2017.
One potential concern that our main analysis does not
address is the possibility that the introduction of new
airline routes has a large effect on certain pairs of air-
ports but a small or no effect on others. If that possibil-
ity were true, our results would have been driven by
one or a group of airport pairs. To address this con-
cern, we perform three different leave-one-out analy-
ses in which we (1) leave out one airport pair at a
time, (2) leave out one origin airport at a time, and (3)
leave one destination airport at time. For (2) and (3),
we exclude all airport pairs related to the left-out
origin or destination airport, respectively.

We present our results from the first leave-one-out
analysis in Table B13 in the online appendix, in which
all the coefficients are positive and statistically signifi-
cant. The magnitude of these coefficients ranges from
0.55 to 0.88, which seemingly implies heterogeneity in
the treatment effect. Yet, these coefficients are not sta-
tistically significantly different from each other and
those from the main analysis. Next, we present the re-
sults from the second and third analyses in Table B14
in the online appendix in which all the coefficients are
positive and statistically significant. Yet, they are not
statistically different from each other and those from
the main analysis. These comparisons suggest our
main analysis is not driven by a particular airport pair,
origin airport, or destination airport.

5.3.9. Alternative Dependent Variable. We now per-
form a robustness check to address a potential concern
that the outcome variable defined in our main analysis
is sparse because some airport pairs do not share a
kidney across many years. To address this concern,
we redefine the dependent variable as a binary vari-
able, SharedKidneyijt, which equals 1 if airport i shared
one or more kidneys with airport j in year t, and 0 oth-
erwise. The control group has 7,321 observations
without kidney sharing and 887 observations with
kidney sharing, so the probability of kidney sharing is
887=(887+ 7, 321) ! 0:108 (or 10.8%). As a comparison,
the treatment group has 815 observations without

kidney sharing and 161 observations with kidney
sharing, so the probability of kidney sharing is
161=(161+ 815) ! 0:202 (or 20.2%). This comparison
suggests the treatment group is more like to share a
kidney. However, it does not control for candidates’
or donors’ features.

To empirically estimate the effect of the introduction
of new airline routes on kidney sharing, we use a link
function (denoted by F(·)) to describe the relationship
between the dependent and independent variables:
F(SharedKidneyijt) ! α0 +α1DirectFlightijt +α2Featuresijt+
α3Airportsij +α4Yeart + εijt. In this study, we use the
probit model and let F(·) !Φ−1(·).14 Table B15 in the
online appendix summarizes the results from the probit
model. We observe that the coefficients of DirectFlight
are positive and significantly different from zero across
all four models. These results suggest introducing
new airline routes increases the likelihood of kidney
sharing. Given the features of interest (denoted by X),
we can calculate the marginal effect of the introduction
of new airline routes using Pr(SharedKidneyijt ! 1 |
X, DirectFlightijt ! 1) − Pr(SharedKidneyijt ! 1|X, Direct
Flightijt ! 0). For an average airport pair (i.e., one with
the average features), we estimate from model 4 that
the introduction of new airline routes increases the like-
lihood of kidney sharing by 6.4%.

5.3.10. Alternative Cutoff Distance or Frequency. In
our main analysis, we focus on the pairs of airports
that are more than 800 miles away from each other,
and use a cut-off frequency of 180 flights per year to
determine whether an airport pair has a direct flight.
Concerns may exist that our results are driven by
these cut-off values. As a robustness check, we have
considered alternative cut-off distances and frequen-
cies to analyze the sensitivity of our results.

Table B16 in the online appendix summarizes the re-
sults in the case of a cut-off distance of 900 miles. The
coefficients ofDirectFlight are positive and significantly
different from zero across all four models. Although
these results are not significantly different from those
obtained in our main analysis, these coefficients have
slightly greater magnitudes, suggesting the effect of
the introduction of new airline routes is more salient
for the pairs of airports that are farther away.15

Table B17 in the online appendix summarizes the
results when we use 120 flights per year (or once ev-
ery three days) as a cut-off frequency to determine
whether an airport pair has a direct flight. The coeffi-
cients of DirectFlight are positive and significantly dif-
ferent from zero in all four models. Interestingly, these
results are similar to those obtained in our main anal-
ysis, primarily because an airline commonly offers ei-
ther daily flights (i.e., 360 flights per year) or no flight
(i.e., 0 flight per year) between two airports. These
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results suggest our results are robust to alternative
cutoff frequencies.

6. Discussions and Managerial Insights
In this section, we discuss possible mechanisms be-
hind our main findings, complemented by additional
analyses helping us draw managerial implications.
First, we estimate the impact on the total number of
kidney transplants and local transplant volume in Sec-
tion 6.1. Next, we test potential negative externality of
introducing direct flights in Section 6.2. We then in-
vestigate the impact on kidney discards and the health
outcomes of transplant candidates in Section 6.3. Fi-
nally, in Section 6.4, we discuss the heterogeneous ef-
fect of flight frequency and timing.

6.1. Impact on the Total Number of Kidney
Transplants

In Section 5, we show the introduction of new airline
routes between a pair of airports leads to an increase in
the number of kidneys shared between the populations
served by the pair. This result does not necessarily
mean the introduction of new airline routes increases
the total number of kidney transplants; the latter may
remain the same evenwhen the former increase.

To analyze whether the introduction of new airline
routes increases the total number of shared kidneys,
we define the dependent variable as the total number
of kidney transplants at both the origin and destina-
tion airports. Table 4 summarizes the results. The coef-
ficient of DirectFlight is positive and significantly dif-
ferent from zero at the 10% significance level in all
four models. These results suggest introducing new
airline routes leads to an increase in the total number
of kidney transplants, implying an increased number
of kidneys were harvested for transplantation.

Table 4 indicates the impact of new airline routes on
the total number of kidney transplants is smaller than
that on the number of shared kidneys. The reason is

the total transplant volume is far higher than the trans-
plant volume resulting from shared kidneys, so a net
increase in the total volume can lead to a smaller per-
centage increase. To further analyze the effect on local
transplant volume, we conduct additional analysis in
Table C1 of the online appendix, which shows intro-
ducing new airline routes has no significant effect on
the volume of local transplants.

6.2. Impact on Airport Pairs with Existing
Direct Flights

We investigate whether the increased number of shared
kidneys between the newly connected airports may
come from those kidneys that would otherwise be
shared with other airports. Specifically, we study
whether introducing a new direct flight would reduce
the number of kidneys shared between existing airport
pairs with airline routes that share either the same ori-
gin or destination airport with the new airline route.
For example, consider three airports A, B, and C. Initial-
ly, an airline route existed between A and B, but no air-
line route existed either between A and C or between B
and C. Later, a new airline route between A and C was
introduced. We are investigating whether introducing a
new airline route between A and C may reduce the
number of kidneys shared between A and B.

To do so, we first identify airport pairs with direct
flights in all years from 2002 to 2017. We then divide
them into three categories depending on whether they
share the same origin or destination with the airport
pairs that were connected through a new airline route:
(1) share the same origin, (2) share the same destination,
and (3) do not share the same origin or destination. Fi-
nally, we perform two separate analyses using category
(3) as the control group and categories (1) and (2) as
two treatment groups, respectively. Tables C2 and C3
in the online appendix summarize the results from
these two analyses. We see the introduction of new air-
line routes does not affect the number of kidneys shared
via airport pairs with existing direct flights.

Table 4. Effect of New Airline Routes on the Total Number of Kidney Transplants

(1) (2) (3) (4)

Coefficient
Standard
error Coefficient

Standard
error Coefficient

Standard
error Coefficient

Standard
error

Direct flight 0.040* 0.022 0.042* 0.023 0.037* 0.022 0.040* 0.022

Candidate features Included Included
Donor features Included Included
Airport-pair fixed effects Included Included Included Included
Year fixed effects Included Included Included Included
Number of observations 8,784 8,784 8,784 8,096
Adjusted R2 0.878 0.879 0.882 0.882

Note. Robust standard errors clustered by airport pair.
***p < 0.01; **p < 0.05; *p < 0.1.
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6.3. Impact on Discard Rate and
Posttransplant Survival

Although we find an increased number of shared kid-
neys and kidney transplants after the introduction of
new airline routes, whether introducing new airline
routes improves or worsens the posttransplant out-
come remains unclear. On the one hand, the outcomes
might improve with the faster traveling option (via di-
rect commercial flights) that allows for better match-
ing between donors and candidates. On the other
hand, the outcomes might worsen because of long
travel distances and potential usage of low-quality
kidneys that would otherwise be discarded.

To answer this question, we first investigate wheth-
er the increased number of shared kidneys between
the newly connected airports may partly come from
kidneys that would otherwise be discarded. Specifi-
cally, we study whether introducing a new direct
flight would reduce the average discard rate of the
two newly connected airports. Our results in Table 5
suggest introducing a new airline route reduces the
discard rate of kidneys by facilitating kidney sharing.

Next, we test how introducing new airline routes af-
fects the three-year posttransplant survival rate for
shared kidneys. Denote by RecipientSurvivalrt a dummy

variable that equals one if recipient r survives more
than three years after a kidney transplant in year t.
For each destination airport j, we identify all the can-
didates associated with airport j and calculate the av-
erage survival rate using AirportSurvivaljt ! 1

N
∑N

r!1
RecipientSurvivalrt, where N refers to the total number
of candidates associated with airport j. We then calcu-
late the average survival rate of an airport pair using
PairSurvivalijt ! (AirportSurvivalit +AirportSurvivaljt)=2
and use it as a new dependent variable.16 From Table 6,
we observe no statistically significant effect on three-
year posttransplant survival rates due to the introduc-
tion of new airline routes. To verify the robustness of
these results, we present similar results using the five-
year posttransplant survival rate as the quality measure
in Table C4 of the online appendix.17

6.4. Effect of Flight Frequency and Timing
As a robustness check of our our main analysis, in Sec-
tion 5.3.4, we used different cutoffs of flight frequency
to define a dummy variable that indicates whether a
new direct flight route is introduced between two air-
ports. To analyze whether the effect of new airline
routes depends on flight frequency, we replace the
treatment dummy with the number of flights (in

Table 5. Results from the Difference-in-Differences Model (Discard Rate)

(1) (2) (3) (4)

Coefficient
Standard
error Coefficient

Standard
error Coefficient

Standard
error Coefficient

Standard
error

Direct flight −0.698** 0.280 −0.693** 0.277 −0.602** 0.282 −0.601** 0.279

Candidate features Included Included
Donor features Included Included
Airport-pair fixed effects Included Included Included Included
Year fixed effects Included Included Included Included
Number of observations 8,784 8,784 8,784 8,784
Adjusted R2 0.286 0.294 0.314 0.322

Notes. Discard rate is defined as the percentage of kidneys that are not recovered for transplantation. For ease of interpretation, we have multi-
plied all outcomes by 100. Robust standard errors clustered by airport pair.

***p < 0.01; **p < 0.05; *p < 0.1.

Table 6. Effect of New Airline Routes on Three-Year Posttransplant Survival

(1) (2) (3) (4)

Coefficient
Standard
error Coefficient

Standard
error Coefficient

Standard
error Coefficient

Standard
error

Direct flight 0.002 0.003 0.002 0.003 0.003 0.003 0.003 0.003

Candidate features Included Included
Donor features Included Included
Airport-pair fixed effects Included Included Included Included
Year fixed effects Included Included Included Included
Number of observations 4,862 4,862 4,862 4,862
Adjusted R2 0.376 0.383 0.389 0.395

Note. Robust standard errors clustered by airport pair.
***p < 0.01; **p < 0.05; *p < 0.1.
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hundreds) per year and estimate the following poly-
nomial regression model:

ln(SharedVolumeijt) ! α0 + α1DirectFlightijt

+ α2DirectFlight2ijt + α3Featuresijt

+ α4Airportsij + α5Yeart + εijt:

Our results in Table 7 suggest that, whereas introducing
new airline routes facilitates kidney sharing, the margin-
al benefit of introducing more direct flights is weakening
given a higher flight frequency. This nonlinear effect
shares the same spirit as the breakpoints in piecewise lin-
ear regression models (Muggeo 2003, Ding et al. 2019).

We also investigate whether the benefit of introduc-
ing direct flight depends on the operation time of new-
ly introduced airline routes. Specifically, we estimate
the heterogeneous effect of new airline routes in terms
of (1) time of the day, that is, day (i.e., between 6:00
a.m. and 5:59 p.m.) versus evening (i.e., between 6:00
p.m. and 5:59 a.m. of the following day) and (2) day of
the week, that is, weekday (Monday through Friday)
versus weekend (Saturday and Sunday). Our results in
Table C5 of the online appendix suggest introducing
new airline routes facilitates kidney sharing regardless
of the time of day. Yet, the effect of introducing a day-
time route is of higher magnitude than introducing an
evening route. This finding echoes the observation
that “organ donation tends to occur in the evening or
early morning” (Pullen 2019, p. 1603), meaning day-
time flights facilitate long-distance kidney sharing
better than evening flights. Likewise, the results in
Table C6 of the online appendix suggest introducing
new airline routes facilitates kidney sharing regardless
of the day of the week, and yet the effect of introduc-
ing new airline routes during weekdays is of higher
magnitude than introducing them during weekends.

7. Conclusion
A significant number of policy initiatives have been
inspired by the U.S. organ transplant system that

predominantly favors local matches and hinders organ
pooling, leading to approximately 28,000 organs being
unrecovered and 3,500 recovered organs being unused
every year (Aubert et al. 2019). Although most of these
policy initiatives focus on expanding organ sharing,
they tend to overlook the airline transportation options
that make it possible: sharing organs across a long dis-
tance requires convenient flight options, ideally direct
flights, because of the time-sensitive nature of organ
harvesting operations. In this paper, we echo a view
expressed by a large number of OPO officials and sur-
geons (OPTN 2019b) that, unless policymakers incor-
porate (or take steps to reduce) a key friction, namely,
air transportation needed for cross-regional organ
sharing, such proposals are unlikely to lead to in-
tended changes. Our paper estimates the effect of the
introduction of new airline routes on the number of
shared kidneys, by analyzing a sample tracking both
the evolution of flight routes and kidney transplants
with donors and recipients living near different pairs
of airports. We estimate the introduction of a direct
flight between a pair of airports increases the number
of kidneys shared between populations served by
these airports by 7.3%. The increase in quantity does
not come with a decrease in the quality of kidney
transplants, as measured by three- and five-year post-
transplantation survival rates. We conduct extensive
robustness checks and show our findings are robust to
alternative empirical specifications.

Our paper represents the first systematic, empirical
effort to understand the role of airline logistics infra-
structure in organ transplantation. We show the intro-
duction of new airline routes leads to a significant in-
crease in organ sharing, which has a potential to
inspire future research into the impact of other treat-
ments in airline routes. To our best knowledge, the
United States does not have major national policy ini-
tiatives providing incentives for improving the logistics
of organ transplantation (Curran 2020). Outside the
United States, Italy has issued national guidelines that

Table 7. Results from the Difference-in-Differences Model (Continuous Treatment Variable)

(1) (2) (3) (4)

Coefficient
Standard
error Coefficient

Standard
error Coefficient

Standard
error Coefficient

Standard
error

Direct flight 0.517*** 0.084 0.521*** 0.089 0.530*** 0.088 0.534*** 0.093
Direct flight squared −0.397*** 0.081 −0.395*** 0.087 −0.411*** 0.085 −0.409*** 0.091

Candidate features Included Included
Donor features Included Included
Airport-pair fixed effects Included Included Included Included
Year fixed effects Included Included Included Included
Number of observations 9,184 9,184 9,184 9,184
Adjusted R2 0.062 0.063 0.061 0.063

Note. Robust standard errors clustered by airport pair.
***p < 0.01; **p < 0.05; *p < 0.1.
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provide minimum requirements (e.g., packaging, label-
ing, and traceability) during airline transportation and
select organ storage units and shipping agents based
on their “efficiency, reliability, and equipment with ref-
erence to organ type and ischemia time” (Mantecchini
et al. 2016, p. 304); the U.S. policymakers may consider
issuing similar national guidelines.

We acknowledge that without financial obligations,
commercial airline companies are unlikely to make
their routing decisions by accounting for public inter-
est.18 Our research provides a causal evidence that in-
efficient airline routing is a significant friction in organ
sharing and, on the flip side, better airline logistics in-
frastructure facilitates broader organ sharing. In light
of our empirical finding, U.S. policymakers may con-
sider establishing a national system that initiates and
tracks organ shipments through commercial airlines
(Aleccia 2020). In recent years, researchers (Gentry
et al. 2015, Kilambi and Mehrotra 2017) have pro-
posed a variety of ways to redistribute donation re-
gions to mitigate geographic disparities in organ allo-
cation. In line with these proposals, our results
support the idea of adjusting DSAs from time to time
by accounting for the network connectivity across var-
ious airports, rather than eliminating DSAs and allo-
cating kidneys using a circle of a fixed size.
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Endnotes
1 As with most operations management literature on kidney trans-
plantation, we focus on the deceased-donor kidney transplantation
system and provide an overview of it in Section 3.1. A kidney from
a deceased donor is referred to as a cadaveric kidney. Living-donor
kidney transplantation is beyond the scope of the paper.
2 Throughout our paper, consistent with common practice (https://
www.anna.aero/all-new-airline-routes/) and the literature (Giroud

2013, Bernstein et al. 2016), an airline route between two airports re-
fers to a nonstop route, with the origin being one airport and the des-
tination being the other.
3 See https://optn.transplant.hrsa.gov/learn/about-transplantation/
how-organ-allocation-works/.
4 Unless specified otherwise, we differentiate the origin from the
destination of an airport pair. That is, an airport pair is direction-
specific in this study.
5 We do not use the recorded flight distance because (1) it is un-
available for the airport pairs without a direct flight, and (2) the ac-
tual flight distance is affected by weather conditions and flight de-
lays, among other factors.
6 Because of the staggered nature of the introduction of new airline
routes, the airport pairs in the treatment group are treated only after
they were connected by new airline routes. Before they are treated,
they serve as controls for airport pairs that have been treated in ear-
lier years (Giroud 2013, p. 870–871).
7 Using a different model (e.g., logit) to estimate the propensity
scores or caliper (e.g., 0.1) to select matched samples does not
change the main conclusion of this robustness check.
8 We include the fixed effects of airport instead of donor-candidate
pairs because each donor-candidate pair appears only once in our
data.
9 Using logit or other models does not qualitatively change the re-
sults of this robustness check.
10 The data set description is available at https://optn.transplant
.hrsa.gov/data/about-data/optn-database/.
11 Using the DOT definition of on-time performance, we allow a 15-
minute buffer beyond the scheduled departure and arrival time of
each flight.
12 According to the National Center for Atmospheric Research
(https://climatedataguide.ucar.edu/climate-data/us-climate
-extremes-index-cei), the CEI captures extreme weather conditions
“in the distribution of much above/below average (top/bottom 10%
of occurrence) temperatures, precipitation, drought, and tropical cy-
clone wind speed across the contiguous U.S.” It is measured for each
region and for each season. Because long-distance air travel is often
affected by extreme weather conditions not only in immediately sur-
rounding areas, but also in broader geographic regions, CEI is a use-
ful metric of extreme weather conditions for the purpose of our
estimation.
13 In this robustness check, we make several assumptions on airport
choices for practicality of estimation. An interesting direction for fu-
ture research entails a full-blownmodeling of airport choices, which
is beyond our scope.
14 Using logit or other models does not qualitatively change the re-
sults of this robustness check.
15 As expected, the effect of the introduction of new airline routes is
smaller for the pairs of airports that are closer to each other, because
healthcare providers may prefer driving to flying when travel dis-
tance is not too long.
16 Using weighted average does not qualitatively change the result
of this analysis.
17 The results are also similar if we use graft survival rate to proxy
the posttransplant outcome, which measures whether the trans-
planted organ still functions.
18 As a notable exception, the Coronavirus Aid, Relief, and Econom-
ic Security (CARES) Act, a $2.2 trillion economic stimulus package
in response to the COVID-19 pandemic that was signed into law by
President Donald Trump on March 27, 2020, mandates each airline
company receiving federal funding to meet minimum required
route service levels (Petchenik 2020).
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