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Problem definition: The COVID-19 pandemic led to a sharp decline in public transit ridership, result-

ing in budget deficits and service cuts that disproportionately affect vulnerable riders who lack alternative

transportation options. Understanding the causal relationship between vaccination and demand for pub-

lic transportation is important for planning demand recovery as vaccination efforts progress. This study

examines this relationship, with particular emphasis on heterogeneous effects among vulnerable populations.

Methodology/Results: Estimating the impact of vaccination is challenging due to a lack of fine-grained

data and potential endogeneity issues. To overcome these hurdles, we exploit the distinctive features of

the COVID-19 vaccination progress to identify an instrumental variable. By merging the U.S. COVID-19

vaccination data with county-level mobility data, we construct a sample that links vaccination rates to the

demand for public transportation and follow the instrumental variable approach to estimate the impact. We

show that increases in vaccination rates led to significant increases in demand for public transportation, as

measured by mobility in public transit stations. Furthermore, we find a 40% greater impact of vaccination on

public transit demand in counties with a larger uninsured population, and a 70% greater impact in counties

with a higher percentage of residents without a college degree. Managerial implications: Our results

demonstrate the significant impact of vaccination on public transit demand, particularly in socioeconomically

disadvantaged communities. Our findings also suggest vaccination alone is not enough to revive demand. As

public health authorities roll out vaccines, there is an immediate need for public transit agencies to proac-

tively revitalize their infrastructure to meet the expected surge in demand from vaccinated populations. This

strategic, anticipatory approach could accelerate an equitable recovery of public transportation systems.
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At this time last year, tens of millions of Americans were riding subways, busses, trains and street cars

for their daily commutes, quietly paying the required fare in both directions. But in the dumpster-fire

year of 2020, in which COVID-19 upended how we live, that routine now seems inconceivable, at least

until a vaccine is widely available.

TIME magazine, December 17, 2020 (Vesoulis 2020)

1. Introduction

Public transit ridership plummeted with the onset of the COVID-19 pandemic. By July 2020,

average U.S. ridership was 73% below pre-pandemic levels; ridership remained at approximately the

same low level until early 2021 (American Public Transportation Association 2023). The significant

decline in transit ridership has “fueled extreme budget shortfalls, forcing transit agencies to cut

routes and delay planned expansions” (Vesoulis 2020). These service cuts are consequential because

they can trigger a vicious cycle—inadequate public transit service leads some riders to switch to

private or shared vehicles, further depressing ridership and justifying even more limited service—

and end up hurting socioeconomically disadvantaged groups, including low-income essential workers

who depend on public transit and cannot afford to switch to other options (Glaeser et al. 2008).

Less than one year after the onset of the pandemic, multiple effective and safe vaccines had been

successfully developed and approved for emergency use in the U.S. The unprecedented pace of

vaccine development itself, however, cannot put an immediate end to the pandemic; the endgame

of the pandemic is vaccination, a “mind-bogglingly complex” operation (Weise 2020). A unique

feature of the U.S. COVID-19 vaccination is the parallel nature of various steps in rolling out

vaccines—manufacturers ramp up their production capacity at the same time as they deliver vac-

cines to various states week after week (Dai and Song 2021). The overlapping processes of vaccine

production, distribution, delivery, and administration provide a compelling window through which

to study the impact of the vaccination progress.

The phenomenon of vaccine-fueled airline travel has attracted substantial media attention (see,

e.g., McCartney 2021). By contrast, the impact of vaccination on public transportation has been

minimally discussed.1 The rollout of COVID-19 vaccines was envisioned as a stepping stone towards

the recovery of the public transportation sector (Vesoulis 2020). However, the near-term impact

of vaccination progress on the demand for public transportation is not immediately clear (Yen

and Weber 2021). A critical question arises: How does the progress of COVID-19 vaccination

influence the demand for public transportation? The answer to this question could guide public

1 The Centers for Disease Control and Prevention (CDC) defines the scope of public transportation to include “a
variety of transit options such as buses, light rail, and subways” (Centers for Disease Control and Prevention 2018).
We focus our analysis on this scope.
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Figure 1 Relationship between Vaccine Eligibility, Vaccination, and Mobility.

transportation agencies in their recovery strategies, helping them preemptively ramp up services

to match the vaccine-buoyed demand and break the vicious cycle of declining ridership (Vesoulis

2020).

Yet, estimating the causal effect of vaccination progress is a daunting task for two main reasons.

One hurdle is the lack of fine-grained vaccination and related data (e.g., population mobility, travel,

and public transportation)—systematic data-collection efforts were rare before the COVID-19 pan-

demic. Another hurdle is potential endogeneity concerns in estimating the effect of vaccination.

For example, inclement weather conditions may reduce vaccination rates and public transportation

demand. One familiar strategy to overcome endogeneity concerns entails using an instrumental

variable (IV) approach. In an extensive literature review, Groenwold et al. (2010, p. 132) conclude

that finding a valid IV for estimating the impact of influenza vaccination amounts to a “mission

impossible.”

Fortunately, the simultaneous production and distribution of the COVID-19 vaccine in the U.S.

offer a compelling opportunity to overcome both hurdles. On the one hand, in contrast to the

paucity of data reporting in previous epidemics (e.g., the 2009–2010 H1N1 pandemic), the alloca-

tion, distribution, and administration of COVID-19 vaccines have been closely tracked and reported

daily. In addition, we compiled information from various sources to obtain data about population

mobility across the U.S. On the other hand, although identifying a suitable IV for influenza or

other vaccine rollouts is difficult, the process of rolling out COVID-19 vaccines provides a novel

IV, namely, vaccine eligibility of different population groups: vaccine eligibility per se has little to

do with population mobility. In the meantime, vaccine eligibility directly drives vaccine distribu-

tion, and its effect on population mobility is through vaccine distribution. Figure 1 illustrates the

interplay between vaccine eligibility, vaccination, and mobility.

Using our IV approach, we estimate a one-percentage-point increase in the fully vaccinated pop-

ulation led to a 0.435-percentage-point increase in mobility in public transit centers. The result
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means that as more people are vaccinated, they are more likely to use public transportation. In

addition, we examine the heterogeneous impacts of COVID-19 vaccination on the demand for pub-

lic transportation, with a particular emphasis on vulnerable populations. Our analysis reveals that

socioeconomic factors, such as education level and health insurance coverage, correlate with the

impact of vaccination on mobility in public transit stations. We find the impact of vaccination on

mobility is 70% larger in counties with higher percentages of individuals without a college degree

and 40% larger in counties with higher percentages of uninsured individuals. These findings high-

light the importance of considering the heterogeneous treatment effects in evaluating the impact

of vaccination on mobility, particularly among vulnerable populations.

Informed by our findings, it is critical that public transportation agencies coordinate with public

health authorities during a pandemic. As vaccines are distributed, the demand for public trans-

portation is likely to increase. Therefore, transit agencies should proactively expand their services

to meet this surge in demand. Our findings support investments aimed at restoring and revital-

izing public transportation service offerings in advance of demand recovery, echoing the strategy

adopted by Metra, a commuter rail system in the Chicago metropolitan area: “We want to be ahead

of demand, because we don’t want people who haven’t ridden in a while to show up at the train and

encounter a crowded situation” (Freishtat 2021). Such investments help prevent long-term losses

of demand for public transportation and avoid a vicious cycle of deteriorating public transporta-

tion options that end up hurting the most vulnerable groups who have few outside options. Our

findings provide an empirical foundation for revitalizing public transit in the wake of a pandemic,

emphasizing the need for proactive measures in anticipation of vaccine-fueled demand recovery. In

the aftermath of the COVID-19 crisis, this strategy promotes the resilience of public transportation

systems and equips them to effectively address the needs of vulnerable populations.

2. Literature Review

Our paper contributes to five streams of literature related to vaccination, transportation and health,

the COVID-19 pandemic, social inequality, and empirical healthcare operations.

First, the design, manufacturing, contracting, and distribution of vaccines, especially influenza

vaccines, is a vibrant topic that has attracted much attention from the operations management

community (see, e.g., Arifoğlu et al. 2012, Arifoğlu and Tang 2022, Bertsimas et al. 2022, Bravo

et al. 2023, Chick et al. 2008, 2017, Craft et al. 2005, Cummings et al. 2021, Dai et al. 2016, Deo

and Corbett 2009, Mak et al. 2022, Niewoehner and Staats 2022, Özaltın et al. 2011, Tebbens

and Thompson 2009, Yamin and Gavious 2013). To our best knowledge, this literature is mostly

theoretical, notwithstanding that several papers (e.g., Bertsimas et al. 2022, Bravo et al. 2023,

Deo and Corbett 2009, Mak et al. 2022) use real-world vaccination data. Our paper contributes to
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this literature by empirically estimating the impact of vaccine rollouts on the demand for public

services.

Second, our paper is related to the operations management and transportation economics litera-

ture on the interaction between transportation and health. Wang et al. (2022) estimate the effect of

the airline transportation network on the sharing of kidneys for transplantation across geographical

regions. Using an online survey of cancer patients, Etminani-Ghasrodashti et al. (2021) show the

quality of transportation options affects patients’ travel behavior and plays an important role in

shaping their decisions to stop or continue treatments. A systematic literature review conducted

by the Centers for Disease Control and Prevention (2018) identifies evidence that introducing or

expanding public transportation services has significant public health benefits, including fewer

traffic accidents, better air quality, and improved physical fitness. In contrast to these papers that

focus on how transportation affects public health and access to healthcare, our paper is possibly

the first to examine the impact of healthcare—in this case, COVID-19 vaccination—on trans-

portation, which has important implications for public transit riders, especially socioeconomically

disadvantaged groups whose mobility depends on public transportation (Glaeser et al. 2008).

Third, the COVID-19 pandemic has inspired a new stream of operations management litera-

ture on topics ranging from nonpharmaceutical interventions (e.g., Kaplan 2020, Wang 2022) to

forecasting (e.g., Betcheva et al. 2021) to diagnostic testing (e.g., Dai and Singh 2022, Jain et al.

2023). A few recent papers, including those by Chen et al. (2020), Jain et al. (2020), Pekoz et al.

(2020), Song et al. (2020a), Sun and Wang (2021), and Wang et al. (2021), examine the effect

of the pandemic on healthcare delivery. Different from these papers, ours is among the very few

papers (e.g., Bertsimas et al. 2022, Mak et al. 2022) that study COVID-19 vaccination.

Fourth, our study is related to the recent stream of operations management literature on social

inequality. Ganju et al. (2020) study the role of clinical decision support systems (CDSS) in miti-

gating systematic bias among Black patients and find that the imposition of standardized protocols

via CDSS in hospitals reduces amputation rate disparities between Black and White patients.

Samorani et al. (2022) examine racial disparities in medical appointment scheduling and find that

Black patients wait longer than non-Black patients in scheduling systems that maximize clinic

performance. Cui et al. (2022) study the effect of the COVID-19 lockdown on female and male

academic research productivity in the social sciences and find that the productivity of female

academics falls significantly relative to that of male academics. Wang (2022) study the effect of

stay-at-home orders on resident mobility and find that uninsured and less educated residents are

less likely to comply with the orders because their jobs prevent them from working from home.

Sun and Wang (2021) investigate whether the expansion of telehealth during the COVID-19 pan-

demic reduces rural-urban disparities in access to care and find that the expansion benefits urban
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populations more than their rural counterparts. Our study contributes to this stream of literature

by highlighting the social inequality caused by the pandemic and how vaccination can help reduce

inequality.

Finally, from a methodological perspective, our work is connected to a large body of empirical

operations management literature that uses an IV approach to address problems arising from the

healthcare industry; see KC (2018), KC et al. (2020), and Terwiesch et al. (2020) for compre-

hensive reviews of this literature. For example, in characterizing the unintended consequences of

hospital capacity pooling, Song et al. (2020b) use measures of preadmission service utilization as

IVs to infer the causal effect of assigning patients from a fully occupied inpatient service to a bed

in a different service category. As another example, Kim et al. (2015) use an indicator of ICU

busyness (i.e., whether ICU bed occupancy is above the 95th percentile) as an IV to estimate the

effect of denied ICU admission on patient outcomes. Other applications of the IV approach to the

healthcare operations literature include Bartel et al. (2020), Ibanez et al. (2018), Jin et al. (2023),

KC and Terwiesch (2011), Lu et al. (2018), and Wang et al. (2023). Joining this literature, our

paper identifies a novel IV to estimate the impact of the vaccination progress, achieving what was

previously deemed a “mission impossible” (Groenwold et al. 2010, p.132), albeit for the case of

influenza vaccination.

3. Background and Data

In this section, we first describe the related background information in Section 3.1. Next, in Sec-

tion 3.2, we introduce the five main data sources used in the study and describe how we prepare

and merge these datasets for our empirical estimation.

3.1. U.S. COVID-19 Vaccine Rollout

As of May 2021, three COVID-19 vaccines, manufactured by Pfizer/BioNTech, Moderna, and

Johnson & Johnson, respectively, were distributed in the U.S. These three vaccines were autho-

rized by the Food and Drug Administration (FDA) for emergency use for adults on December

11, 2020, December 18, 2020, and February 28, 2021, respectively. Of these three vaccines, the

Pfizer/BioNTech and Moderna vaccines are based on messenger RNA (mRNA) technology and

require two doses for a recipient to be considered fully vaccinated, whereas the Johnson & John-

son vaccine is based on the viral vector technology and requires a single dose. The recommended

interval between two vaccine doses is three weeks for the Pfizer/BioNTech vaccine and four weeks

for the Moderna vaccine. Due to its relatively late approval and limited production capacity, the

Johnson & Johnson vaccine accounts for only a small proportion—3.43% as of September 30, 2022,

according to the CDC2—of COVID-19 vaccines administered in the U.S. In April 2021, the U.S.

2 https://covid.cdc.gov/covid-data-tracker/#vaccinations

https://covid.cdc.gov/covid-data-tracker/#vaccinations
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government suspended the distribution of the Johnson & Johnson vaccine after the emergence of

cases of blood clotting.

December 14, 2020, marked the first day of administering the Pfizer/BioNTech vaccine.3 With

the three-week lead time between the two doses, January 4, 2021, was the earliest date on which

an individual could be fully vaccinated. The U.S. COVID-19 vaccine rollout was initially sluggish,

with only 2 million doses administered by the end of 2020, significantly below the 20-million-dose

target (Dai and Song 2021). To provide guidance for the planning and implementation of the

COVID-19 vaccination program, the Advisory Committee on Immunization Practices (ACIP) has

advised on the population groups and circumstances for vaccine use, prioritizing essential workers

in healthcare and residents of long-term care facilities in the initial phase to focus on averting

deaths. As the vaccine supply increased, more individuals became eligible for vaccine based on age,

occupation, and underlying health conditions. However, because some states designed their own

vaccination program, variations may exist in the eligibility rules outlined by the CDC (Raifman

et al. 2020). The pace of vaccine rollout accelerated after January 2021 and peaked on April 12,

2021, with a seven-day average of 3.49 million doses administered per day.4 As of June 30, 2021,

the seven-day average number of daily doses remained around 0.58 million.

3.2. Data Description and Preparation

Our study builds on five data sources covering different aspects such as mobility, vaccine adminis-

tration and eligibility, weather patterns, COVID-19 case counts, and county-specific characteristics.

In the following section, we describe each data source in detail and explain our process for preparing

the data for empirical analysis.

First, we obtained mobility data from Google’s COVID-19 Community Mobility Reports.5 The

population-level aggregated and deidentified dataset tracks the change in mobility in different

locations with respect to their pre-COVID baseline values. The mobility data are based on the

location history collected by Google, and the computational algorithm considers factors such as

the number of visits and visit duration in order to represent mobility in different places (Aktay

et al. 2020). The pre-COVID baseline values are identified by calculating the median values on

the corresponding day of the week from January 3, 2020, to February 6, 2020. The six location

categories are transit stations, grocery and pharmacy stores, retail and recreation facilities, parks,

workplaces, and residential areas. In this study, we focus on the transit station category, which

includes public transportation hubs such as bus stops, subway stations, and train stations. Mobility

3 https://nyti.ms/3uEiWYa

4 https://n.pr/2Raxmkq

5 https://www.google.com/covid19/mobility/index.html?hl=en

https://nyti.ms/3uEiWYa
https://n.pr/2Raxmkq
https://www.google.com/covid19/mobility/index.html?hl=en
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data were collected from February 15, 2020, and aggregated at both county and state levels in the

U.S.

Second, we collected county-level COVID-19 vaccine distribution and administration data about

the COVID-19 vaccination in the U.S. from the CDC.6 The tracker was updated daily with new

vaccination data before June 22, 2022, and updated weekly afterward. Related to the measurement

of vaccination progress, the data contain many vaccination-related variables, such as the vaccine

coverage of the first dose, the second dose, and the booster shot among various populations. They

report the raw number as well as the population percentage in each county or state on each day.

Third, to gather information on vaccine eligibility, we leveraged the COVID-19 State Policy

database (Raifman et al. 2020). This database contains information on the vaccine distribution

plan for different sub-populations in each state. Based on the guidelines set by the CDC (Dooling

et al. 2020), states determine their vaccine distribution schedule by considering various factors

such as age, the number of underlying health conditions, and occupation. To determine the eligible

population for each phase, we acquired population age and occupation-distribution data from the

2015-2019 American Community Survey (ACS) conducted by the U.S. Census Bureau (Census

Bureau 2022a) and cross-referenced them with the workers’ categorization from the CDC (Centers

for Diseases Control and Prevention 2021)

Fourth, realizing both mobility and vaccination can be affected by weather, we obtained daily

weather information (e.g., temperature and precipitation) at various weather observation stations

across the U.S. from the National Centers for Environmental Information.7 To obtain a county-wise

measurement, we calculate the averages based on the information reported by weather observation

stations within the county. In addition, we obtain the federal holiday schedule from 2020 to 2021

from the Office of Personnel Management because both people’s movement and vaccination patterns

might change during holidays.8

Finally, to perform additional analyses, we obtain COVID-19 cases data from the New York

Times GitHub repository,9 and county-characteristics data (e.g., the percentage of the population

that is uninsured and the percentage of the population that holds a college degree) from the County

Health Rankings and Roadmaps (CHR&R) program created by the Population Health Institute

at the University of Wisconsin.10

6 https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States-County/8xkx-amqh

7 https://www.ncdc.noaa.gov/cdo-web/datatools

8 https://www.opm.gov/policy-data-oversight/pay-leave/federal-holidays

9 https://github.com/nytimes/covid-19-data

10 https://www.countyhealthrankings.org/explore-health-rankings/rankings-data-documentation

https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States-County/8xkx-amqh
https://www.ncdc.noaa.gov/cdo-web/datatools
https://www.opm.gov/policy-data-oversight/pay-leave/federal-holidays
https://github.com/nytimes/covid-19-data
https://www.countyhealthrankings.org/explore-health-rankings/rankings-data-documentation
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To ensure consistency across different types of data, we compiled the data at the county level. The

data preparation and integration process entailed merging the mobility, vaccine administration,

and weather data using the date and Federal Information Processing Standard (FIPS) code for each

county as key identifiers. Subsequently, we linked the aggregated data with county-level vaccine

eligibility information through the FIPS code and combined them with holiday information based

on the date. The final consolidated dataset incorporated 47 states and the District of Columbia

from December 15, 2020, to April 30, 2021. We excluded Alaska and Hawaii due to a lack of

consistent mobility records throughout our analysis period, and we excluded Texas because the

CDC reported incomplete vaccination records before October 22, 2021.11

4. Empirical Model

In this section, we first describe the variables of interest. We then discuss the empirical challenges

of using an ordinary least squares (OLS) regression model to establish causality. Finally, we present

our identification strategy by introducing an IV specific to COVID-19 vaccination progress.

4.1. Variable Description

To assess the impact of vaccine rollouts on mobility, we focus on the public transportation sector

for three reasons: (1) It is one of the sectors most severely affected by the pandemic (Sylvers

2020); (2) its recovery serves as a reliable indicator of progress toward pre-pandemic normalcy, as

anticipated from the mass-vaccination campaign (Vesoulis 2020); and (3) it plays a significant role

in the daily lives of millions of Americans, particularly socioeconomically disadvantaged groups

who predominantly rely on public transportation and possess limited alternatives (Glaeser et al.

2008). With this focus in mind, we represent the mobility of residents in county i on day t as

Mobilityit. As outlined in Section 3.2, Mobilityit corresponds to the percentage change in mobility

compared to pre-COVID values.

In our main and supplemental analyses, we focus on mobility in transit stations, which include

public transportation hubs such as bus stops, subway stations, and train stations. Google’s COVID-

19 Community Mobility Reports record mobility relative to baseline days, so our dependent variable

is negative if mobility in a county on a given day is less than the baseline day, and positive otherwise.

We use the original rather than the log-transformed mobility as the dependent variable because (1)

the original mobility is normally distributed and (2) a log transformation of mobility relative to

baseline days makes our results difficult to interpret. To ensure the integrity and comprehensiveness

of our data, we focused on a subset of counties that satisfied specific inclusion criteria. Out of

3,142 counties in the U.S., we exclude 2,416 counties from our analysis due to incomplete records

11 https://www.cdc.gov/coronavirus/2019-ncov/vaccines/reporting-vaccinations.html

https://www.cdc.gov/coronavirus/2019-ncov/vaccines/reporting-vaccinations.html
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Figure 2 Counties Included in the Analysis

.

of mobility at transit stations, as identified in the Google Community Mobility Report. Also, we

refine our selection by excluding an additional 68 counties in Texas according to the CDC’s reports

on incomplete vaccination records in Texas before October 22, 2021.12 By excluding counties with

incomplete or unreliable data, we conduct our analyses with the remaining 658 counties. Note that

although the 658 counties included in our analysis represent 21% of the total 3,142 U.S. counties,

they account for approximately 65% of the total U.S. population. Because the counties we selected

cover a substantial population, our findings are generalizable to a significant portion of the U.S.

population.

Our main independent variable is the percentage of the population that is vaccinated. This

variable can be measured in two ways: (1) the percentage of the population that is fully vaccinated

in county i on the day before day t (denoted by V accinationit−1), and (2) the percentage of the

population that receives at least the first dose of vaccine in county i on the day before day t (denoted

by FirstDoseV accinationit−1). In the main analysis, we use V accinationit−1 as an independent

variable. As a robustness check, we use FirstDoseV accinationit−1 as an alternative independent

variable. Our main analysis uses a one-day time lag between vaccination and mobility to address

a potential concern that increased mobility may result from people travelling for vaccination. To

understand the effect of a time lag, we perform a robustness check in Section 5.3.8 to analyze the

effect of vaccine rollouts on mobility with several lagged versions of the vaccination variable.

12 https://www.cdc.gov/coronavirus/2019-ncov/vaccines/reporting-vaccinations.html

https://www.cdc.gov/coronavirus/2019-ncov/vaccines/reporting-vaccinations.html
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Weather can have a significant impact on both mobility and vaccination. Adverse weather con-

ditions can negatively impact immunization on both the demand and supply sides by limiting the

mobility of individuals. On the demand side, citizens may be reluctant to get vaccinated due to

the inconvenience of commuting during inclement weather. On the supply side, vaccination cen-

ters may face shutdowns or partial operations due to adverse weather conditions (see, e.g., Petrie

2021). To control for the effect of weather, we include the maximum temperature (denoted by

MaxTemperatureit), minimum temperature (denoted by MinTemperatureit), and precipitation

(denoted by Precipitationit) in county i on day t as additional independent variables.

Another important factor that can affect both mobility and immunization is holidays. For exam-

ple, residents are more likely to travel during holidays to gather with family and friends. On the

other hand, residents are less likely to be vaccinated during holidays for two reasons. First, residents

are more likely to have other plans during the holidays. Second, vaccination sites may be closed or

partially closed during holidays (see, e.g., Florida Department of Public Health in Orange County

2021). To control for the effect of holidays, we include a vector of holidays (denoted by Holidayt)

as additional independent variables.13

The relationship between the dependent and independent variables can be described as

Mobilityit =β0 +β1V accinationit−1 +β2Weatherit +β3Holidayt

+β4Countyi +β5Dayt + εit, (1)

where Weatherit = {MaxTemperatureit,MinTemperatureit, P recipitationit} and εit denotes an

error term. Note we include county fixed effects (denoted by Countyi) to capture the systematic

differences across counties and day fixed effects (denoted by Dayt) to capture the time trends of

mobility over different days of a week.

We are particularly interested in the coefficient β1, because it describes the relationship between

vaccination and mobility. A positive coefficient indicates an increase in vaccination increases mobil-

ity, whereas a negative coefficient indicates otherwise. Note our estimation will be biased if the

error term (i.e., εit) correlates with both the dependent variable (i.e., Mobilityit) and the indepen-

dent variable of interest (i.e., V accinationit−1). The coefficient β2 indicates the correlation between

weather and mobility, and β3 indicates the correlation between holiday and mobility. Finally, β4

and β5 indicate the differences in mobility across counties and over time, respectively.

13 Holidays include Christmas Eve, Christmas Day, New Year’s Eve, Martin Luther King Day, President’s Day,
Memorial Day, and Juneteenth.
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4.2. Identification Strategy

Using (1) to estimate the effect of vaccine rollouts on mobility presents an endogeneity issue when

the error term, εit, correlates with both the dependent variable, Mobilityit, and the independent

variable of interest, V accinationit−1. For example, an increase in COVID-19 infection may reduce

mobility, because residents are worried about being infected while traveling. At the same time, an

increase in COVID-19 infection may increase vaccination, because residents are more aware of the

risks of COVID-19 and the benefits of vaccination. Although controlling for observable features such

as COVID-19 infection is possible (see Section 5.3.2), we cannot control for unobservable features

(e.g., health consciousness) that affect both mobility and vaccination. To address the endogeneity

issue, we consider three alternative approaches: difference-in-differences, regression discontinuity,

and IV.

First, a difference-in-differences approach requires a control group that does not have vaccination.

However, in the case of the COVID-19 vaccine rollout, all states started vaccination around mid-

December 2020, immediately after the Pfizer/BioNTech vaccine was approved for emergency use

(Gee 2021). For this reason, a control group required by the difference-in-differences approach does

not exist. Even if such a control group exists, the difference-in-differences approach would not be

suitable, because the treatment is a continuous instead of a binary variable.

Second, a regression discontinuity approach requires a cutoff to assign the intervention. Some

might suggest using the vaccination start date (December 14, 2020) as the cutoff date, because

vaccination is zero before the cutoff date and a positive number after the cutoff date. This approach

is not plausible, because the change in mobility around the cutoff date could be due to time

trends. Others may consider the age of 65 as a cutoff, because residents aged 65 and above were

prioritized for vaccination in the initial months of the vaccine rollout. This approach is plausible

but requires individual-level data about vaccination and mobility. Yet, our publicly available data

are aggregated at the county—as opposed to individual—level. For this reason, the regression

discontinuity approach is not suitable for addressing our issues either.

Third, an IV approach requires an exogenous variable that correlates with the variable of interest

but does not correlate with the error term. Identifying a good IV to assess the impact of vacci-

nation is a daunting task. Classes of medication, facility prescribing patterns, physician patterns,

and patient characteristics have been considered as IVs but proven to fail to meet the necessary IV

criteria (Chen and Briesacher 2011, Groenwold et al. 2010). Potential IVs in our setting include the

closeness to vaccination facilities, age groups of the vaccinated people, and characteristics of vacci-

nation facilities. However, these IVs require vaccination records at the individual or vaccination-site

level. Due to limitations in the publicly available data, these potential IVs are infeasible for our

analysis.
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In this study, we propose using the percentage of the population eligible for vaccination in

county i on the day before day t (denoted as V accineEligibilityit−1) as an IV for vaccination (i.e.,

V accinationit−1). Previous studies, such as those by Agrawal et al. (2021) and Aslim et al. (2022),

have used vaccine eligibility as an IV to examine the relationship between vaccine administration

and health outcomes at the individual level.

Our study extends this approach by focusing on vaccine eligibility at the population level. The

motivation for this approach is that during the COVID-19 vaccine rollout, states made vaccines

available based on factors such as age, underlying health conditions, and occupation. Consequently,

the proportion of the eligible population would have a direct impact on the number of doses

administered, thus meeting the relevance criterion of a valid IV. Consistent with previous studies,

we calculate vaccine eligibility primarily based on age (Agrawal et al. 2021, Aslim et al. 2022).

In addition, our study differs from previous studies by calculating the percentage of essential

healthcare workers eligible for vaccine during the initial phase, providing a more comprehensive

representation of the initially eligible population.

To determine the vaccine eligibility variable, we obtained data on the age and occupational

distribution of the population from the 2015-2019 American Community Survey (ACS) conducted

by the U.S. Census Bureau (Census Bureau 2022a) and matched it with the categorization of

healthcare workers based on the CDC guideline (Centers for Diseases Control and Prevention 2021).

We test the relevance criterion through a first-stage regression in which the dependent variable is

vaccination and the independent variables are vaccine eligibility and other control variables.

Our proposed IV is likely to meet the exogeneity criterion because the process of phasing in

the vaccine based on eligibility criteria does not directly affect mobility in each county. State

administrators determine the population eligible for vaccine primarily based on age group, so the

percentage of the eligible population does not affect mobility. To account for the possibility that

older individuals, who are more likely to be eligible for the vaccine in the earlier phase, may have

reduced mobility regardless of the administration process, we include county fixed effects in our

analysis. These fixed effects account for county-level characteristics, such as the percentage of

elderly individuals and transportation infrastructure, that may directly affect mobility.

4.3. IV Regression

In the main analysis, we use the two-stage least squares (2SLS) approach to estimate the effect of

vaccine rollouts. In the first stage, we regress the endogenous variable, V accinationit−1, over the

IV and other exogenous variables:

V accinationit−1 =α0 +α1V accineEligibilityit−1 +α2Weatherit +α3Holidayt

+α4Countyi +α5Dayt + ξit, (2)
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where the coefficient α1 indicates the relation between V accinationit−1 and V accineEligibilityit−1.

A statistically significant coefficient would suggest our IV has a strong first stage. We use the

first-stage regression model to predict the endogenous variable (denoted by ̂V accinationit−1).

In the second stage, we regress the dependent variable, Mobilityit, over the predicted endogenous

variable, ̂V accinationit−1, from the first stage and other exogeneous variables:

Mobilityit =β0 +βIV
̂V accinationit−1 +β2Weatherit +β3Holidayt

+β4Countyi +β5Dayt + ζit, (3)

where the coefficient of interest is βIV . A positive coefficient indicates an increase in vaccination

leads to increased mobility, whereas a negative coefficient indicates otherwise. Comparing β1 in

equation (1) and βIV in equation (3) allows us to understand whether our proposed IV effectively

addresses potential endogeneity issues.

5. Results and Discussion

In this section, we first provide summary statistics of our data in Section 5.1. We then present the

results from our proposed IV regression in Section 5.2. Finally, we perform extensive robustness

checks in Section 5.3.

5.1. Summary Statistics

Our dataset covers 658 counties from December 16, 2020, to April 30, 2021. Table 1 provides

the definition and summary statistics of the dependent and key independent variables. For ease

of interpretation, we have multiplied the variable, V accination, by 100. The dependent variable,

Mobility, has a mean of −8.53 with a standard deviation of 30.72. Because the dependent variable

measures mobility relative to baseline days, the negative mean of this variable suggests the average

mobility during our study period has not recovered to the baseline mobility yet. The main inde-

pendent variable of interest, V accination, has a mean of 15.87 and a standard deviation of 15.61.

This variable has a wide variation for two reasons. First, the percentage of the fully vaccinated

population differs across counties on a given day. Second, the percentage of the population that is

fully vaccinated increases over time in a given county.

5.2. Main Results

We start with assessing the relevance condition of the IV by conducting the first-stage regression

as specified by (2) and summarizing the results in Table 2. The positive coefficient of the variable,

V accineEligibility, confirms the positive relationship between the percentage of the population

eligible for the COVID-19 vaccine and the percentage of the population being fully vaccinated.

The coefficient of the variable is significantly different from zero at the 1% significance level, which
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Table 1 Definition and Summary Statistics

Variable Definition Mean Std. Dev.

Dependent
Mobility Mobility in transit stations relative to baseline days −8.53 30.72

Independent
Vaccination Percentage of the population that are fully vaccinated 15.87 15.61

Observations 129,626

Note: This table provides the definition and summary statistics of the dependent and
key independent variables. For ease of interpretation, we have multiplied the variable,
V accination, by 100.

Table 2 Results from the First-Stage Regression

Variable Coefficient Standard Error

Vaccine Eligibility 0.319 ∗ ∗∗ 0.010
Weather Included
Holiday Included
County Fixed Effects Included
Day Fixed Effects Included
Number of Observations 129,626
Adjusted R-Squared 0.832

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This table summarizes the results
from the first-stage regression. The dependent variable is vaccination. Indepen-
dent variables are vaccine eligibility, weather, holidays, county fixed effect, and
day fixed effect. Robust standard errors are clustered by county.

suggests our IV has a strong first stage. The coefficient of 0.319 means a one-percentage-point

increase in vaccine eligibility increases vaccination coverage by 0.319 percentage points.

Next, we formally analyze the effect of vaccine rollouts on mobility by using the 2SLS regres-

sion (see Section 4.3). Table 3 summarizes the results from the IV regression. The coefficient of

the variable, V accination, is positive and significantly different from zero at the 1% significance

level, which suggests an increase in vaccination increases mobility. Because our dependent vari-

able measures residents’ mobility relative to the baseline days, the coefficient of 0.435 means a

one-percentage-point increase in vaccination increases mobility by 0.435 percentage points.

As a comparison, we conduct the OLS regression specified by equation (1). The results are sum-

marized in Table 4. We see the coefficient of V accination is positive and significantly different

from zero at the 1% significance level, which suggests an increase in vaccination increases mobility.

However, the coefficient in the OLS regression has a smaller magnitude than that in the IV regres-

sion, which suggests one might underestimate the effect of vaccine rollouts by ignoring potential

endogeneity issues.

5.3. Robustness Checks

We perform extensive robustness checks to analyze the sensitivity of our results. First, Sections 5.3.1

and 5.3.2 control for statewide COVID-19 policies and COVID-19 infection, both of which may



16 Zhong, Wang, and Dai: Wheels on the Bus: Impact of Vaccine Rollouts on Demand for Public Transportation

Table 3 Results from the IV Regression

Variable Coefficient Standard Error

Vaccination 0.435 ∗ ∗∗ 0.022
Weather Included
Holiday Included
County Fixed Effects Included
Day Fixed Effects Included
Number of Observations 129,626
Adjusted R-Squared 0.816

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This table summarizes the results
from the IV regression. The dependent variable is mobility in transit stations.
Independent variables are vaccination, weather, holidays, county fixed effect,
and day fixed effect. Robust standard errors are clustered by county.

Table 4 Results from the OLS Regression

Variable Coefficient Standard Error

Vaccination 0.295 ∗ ∗∗ 0.024
Weather Included
Holiday Included
County Fixed Effects Included
Day Fixed Effects Included
Number of Observations 129,626
Adjusted R-Squared 0.818

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This table summarizes the results
from the OLS regression. The dependent variable is mobility in transit stations.
Independent variables are vaccination, weather, holidays, county fixed effect,
and day fixed effect. Robust standard errors are clustered by county.

affect both vaccination and mobility. Next, we test two alternative models: Section 5.3.3 analyzes

the effect of first-dose vaccination; Section 5.3.4 uses the log-transformed percentage of the popu-

lation that is fully vaccinated as an alternative independent variable, and Section 5.3.5 includes a

quadratic term of vaccination to examine the non-linear effect. Sections 5.3.6 and 5.3.7 address the

potential concern that our estimation may be driven by a particular state or week, and Section 5.3.8

uses lagged versions of vaccination as the independent variable.

5.3.1. Controlling for Statewide COVID-19 Policies. A potential concern is that

statewide COVID-19 policies affect both vaccination and mobility. For example, statewide stay-at-

home orders can reduce mobility because people are required to stay at their homes. At the same

time, they can increase vaccination coverage because people are more likely to receive vaccines if

they are not traveling or engaging in other activities. To address this potential concern, we first

identify relevant statewide policies from Boston University’s COVID-19 US State Policy Database

and then include these policies as additional independent variables (Raifman et al. 2020). Table 5

summarizes the results when we include stay-at-home orders, business closures, and reopenings
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as additional independent variables. The results from this robustness check are not significantly

different from those in the main analysis, which suggests omitting statewide COVID-19 policies

does not drive our results.

Table 5 Results from the IV Regression (Control for Statewide COVID-19 Policies)

Variable Coefficient Standard Error

Vaccination 0.439 ∗ ∗∗ 0.022
Statewide COVID-19 Policies Included
Weather Included
Holiday Included
County Fixed Effects Included
Day Fixed Effects Included
Number of Observations 129,626
Adjusted R-Squared 0.816

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This table summarizes the results
from the IV regression. The dependent variable is mobility in transit stations.
Independent variables are vaccination, statewide COVID-19 policies, weather,
holidays, county fixed effect, and day fixed effect. Robust standard errors are
clustered by county.

5.3.2. Controlling for COVID-19 Infection. As mentioned in Section 4.1, COVID-19

infection may affect both mobility and vaccination. For instance, a high rate of infection in an

area makes people more cautious and reduces their mobility. At the same time, the fear of getting

infected increases the number of people willing to get vaccinated. To address this concern, we

include the seven-day rolling average of daily newly reported cases in county i on day t (denoted

by Infectionit) as an additional independent variable. The results from this robustness check are

summarized in Table 6. We observe from the table that the coefficient of V accination is positive

and significantly different from zero at the 1% significance level. The results of this robustness

check are not significantly different from those of the main analysis, indicating whether we consider

COVID-19 infection does not drive our results.

5.3.3. First-Dose Vaccination. Our main analysis uses the percentage of the fully vacci-

nated population as an independent variable. Note Pfizer/BioNTech and Moderna recommend

three- and four-week gaps, respectively, between the first and second doses of the vaccine. Because

existing studies (see, e.g., Lovelace 2021, Gorvett 2021) report high efficacy of the first dose,

residents may start changing their mobility patterns after the first dose. In this robustness

check, we use the percentage of the population that receives at least the first dose (denoted by

FirstDoseV accination) as an alternative independent variable.

The results from this robustness check are summarized in Table 7. We observe from the table

that the coefficient of FirstDoseV accination is positive and significantly different from zero at
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Table 6 Results from the IV Regression (Control for COVID-19 Infection)

Variable Coefficient Standard Error

Vaccination 0.457 ∗ ∗∗ 0.023
COVID-19 Infection Included
Weather Included
Holiday Included
County Fixed Effects Included
Day Fixed Effects Included
Number of Observations 129,626
Adjusted R-Squared 0.815

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This table summarizes the results
from the IV regression. The dependent variable is mobility in transit stations.
Independent variables are vaccination, COVID-19 infection level, weather, hol-
idays, county fixed effect, and day fixed effect. Robust standard errors are
clustered by county.

the 1% significance level, which suggests an increase in first-dose vaccination increases mobility.

More specifically, the coefficient of 0.361 suggests a one-percentage-point increase in first-dose

vaccination increases mobility by 0.361 percentage points. Note the coefficient in this robustness

check is smaller than that in the main analysis, because the mean of FirstDoseV accination is

larger than that of V accination.

Table 7 Results from the IV Regression (First-Dose Vaccination)

Variable Coefficient Standard Error

First-Dose Vaccination 0.361 ∗ ∗∗ 0.018
Weather Included
Holiday Included
County Fixed Effects Included
Day Fixed Effects Included
Number of Observations 129,626
Adjusted R-Squared 0.815

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This table summarizes the results
from the IV regression. The dependent variable ismobility in transit stations.
Independent variables are first-dose vaccination, weather, holidays, county fixed
effect, and day fixed effect. Robust standard errors are clustered by county.

5.3.4. Alternative Model with Log-Transformed Term. In the main analysis, we use

V accination as an independent variable, because it follows a normal distribution. As a robust-

ness check, we use the log-transformed percentage of the fully vaccinated population, denoted by

ln(V accination), as an alternative independent variable. The results from this robustness check

are shown in Table 8. We observe from the table that the coefficient of ln(V accination) is positive
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and significantly different from zero at the 1% significance level, indicating an increase in vaccina-

tion increases mobility. The coefficient of 4.473 suggests a one-fold increase in vaccination coverage

increase mobility by 4.473× (ln(Mobility× 2)− ln(Mobility)) = 3.100 percentage points.

Table 8 Results from the IV Regression (Linear-Log Model)

Variable Coefficient Standard Error

ln(Vaccination) 4.473 ∗ ∗∗ 0.212
Weather Included
Holiday Included
County Fixed Effects Included
Day Fixed Effects Included
Number of Observations 129,626
Adjusted R-Squared 0.821

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This table summarizes the results
from the IV regression. The dependent variable is mobility in transit sta-
tions. Independent variables are log-transformed vaccination, weather, holidays,
county fixed effect, and day fixed effect. Robust standard errors are clustered
by county.

5.3.5. Alternative Model with Quadratic Term. In the main analysis, we use

V accination as an independent variable. However, a potential concern is that the impact of vac-

cination on mobility might be non-linear. In this robustness check, we expand our analysis by

constructing an additional 2SLS regression model that includes a quadratic term of the vaccina-

tion variable, denoted by V accination2, to examine the non-linear effect of vaccination on public

transportation mobility. Our analysis finds the coefficient of V accination is 0.803 and is statisti-

cally different from zero, indicating vaccination has a significant impact on public transportation

mobility. The coefficient of V accination2 is negative and statistically significant at the 1% signif-

icance level, which suggests the marginal effect of vaccination on public transportation mobility

diminishes as vaccination coverage increases. The magnitude of the first-order effect is almost two

times larger than that estimated in the main analysis without the quadratic term, indicating a

large initial boost in public transportation use following vaccination.

5.3.6. Leave-State-Out Analysis. To address a potential concern that our results are driven

by a particular state, we perform a leave-state-out analysis by leaving out one state at a time and

re-estimate the effect of vaccine rollouts; we summarize the results in Table 10. As the table shows,

all the coefficients are positive and significantly different from zero, which suggests an increase in

vaccination increases mobility. These coefficients are not significantly different from each other or

those in the main analysis, which suggests our results are not driven by a particular state.
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Table 9 Results from the IV Regression (Quadratic Model)

Variable Coefficient Standard Error

Vaccination 0.803 ∗ ∗∗ 0.052
Vaccination2 −0.011 ∗ ∗∗ 0.001
Weather Included
Holiday Included
County Fixed Effects Included
Day Fixed Effects Included
Number of Observations 129,626
Adjusted R-Squared 0.822

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This table summarizes the results
from the IV regression. The dependent variable is mobility in transit stations.
Independent variables are vaccination and its quadratic term, weather, hol-
idays, county fixed effect, and day fixed effect. Robust standard errors are
clustered by county.

Table 10 Results from the IV Regression (Leave-State-Out Analysis)

Left-Out State Coefficient Standard Error Left-Out State Coefficient Standard Error

AL 0.424 *** 0.022 MT 0.432 *** 0.022
AZ 0.435 *** 0.022 NE 0.433 *** 0.022
AR 0.440 *** 0.022 NV 0.430 *** 0.022
CA 0.462 *** 0.024 NH 0.433 *** 0.022
CO 0.429 *** 0.022 NJ 0.441 *** 0.023
CT 0.434 *** 0.022 NM 0.441 *** 0.023
DE 0.435 *** 0.022 NY 0.438 *** 0.023
DC 0.436 *** 0.022 NC 0.437 *** 0.023
FL 0.453 *** 0.023 ND 0.433 *** 0.022
GA 0.421 *** 0.022 OH 0.432 *** 0.023
ID 0.429 *** 0.022 OK 0.444 *** 0.023
IL 0.433 *** 0.023 OR 0.432 *** 0.023
IN 0.432 *** 0.023 PA 0.431 *** 0.022
IA 0.431 *** 0.022 RI 0.435 *** 0.022
KS 0.434 *** 0.022 SC 0.418 *** 0.021
KY 0.440 *** 0.023 SD 0.433 *** 0.022
LA 0.447 *** 0.023 TN 0.435 *** 0.023
ME 0.435 *** 0.022 UT 0.431 *** 0.022
MD 0.439 *** 0.022 VT 0.435 *** 0.022
MA 0.437 *** 0.022 VA 0.435 *** 0.022
MI 0.434 *** 0.022 WA 0.433 *** 0.023
MN 0.431 *** 0.022 WV 0.433 *** 0.022
MS 0.431 *** 0.022 WI 0.433 *** 0.022
MO 0.439 *** 0.023 WY 0.434 *** 0.022

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This table summarizes the results from the leave-
state-out analysis. We leave out one state at a time and perform IV regression with the newly
constructed data. The dependent variable is mobility in transit stations. The independent vari-
ables are vaccination, weather, holidays, county fixed effect, and day fixed effect. Robust stan-
dard errors are clustered by county.
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5.3.7. Leave-Week-Out Analysis. To address a potential concern that our results are driven

by a particular period, we perform a leave-week-out analysis by leaving out one week at a time and

re-estimate the effect of vaccine rollouts; we summarize the results in Table 11. As the table shows,

all the coefficients are positive and significantly different from zero, which suggests an increase in

vaccination increases mobility.

Table 11 Results from the IV Regression (Leave-Week-Out Analysis)

Index Left-Out Week Coefficient Standard Error

1 2020-12-16 to 2020-12-21 0.460 *** 0.022
2 2020-12-22 to 2020-12-28 0.445 *** 0.022
3 2020-12-29 to 2021-01-04 0.434 *** 0.022
4 2021-01-05 to 2021-01-11 0.429 *** 0.022
5 2021-01-12 to 2021-01-18 0.417 *** 0.022
6 2021-01-19 to 2021-01-25 0.417 *** 0.022
7 2021-01-26 to 2021-02-01 0.423 *** 0.022
8 2021-02-02 to 2021-02-08 0.428 *** 0.022
9 2021-02-09 to 2021-02-15 0.439 *** 0.022
10 2021-02-16 to 2021-02-22 0.452 *** 0.022
11 2021-02-23 to 2021-03-01 0.428 *** 0.022
12 2021-03-02 to 2021-03-08 0.435 *** 0.022
13 2021-03-09 to 2021-03-15 0.444 *** 0.023
14 2021-03-16 to 2021-03-22 0.459 *** 0.022
15 2021-03-23 to 2021-03-29 0.447 *** 0.023
16 2021-03-30 to 2021-04-05 0.420 *** 0.022
17 2021-04-06 to 2021-04-12 0.427 *** 0.022
18 2021-04-13 to 2021-04-19 0.425 *** 0.022
19 2021-04-20 to 2021-04-26 0.426 *** 0.023
20 2021-04-27 to 2021-05-03 0.437 *** 0.022
21 2021-05-04 to 2021-05-10 0.440 *** 0.023
22 2021-05-11 to 2021-05-17 0.428 *** 0.022
23 2021-05-18 to 2021-05-24 0.441 *** 0.022
24 2021-05-25 to 2021-05-31 0.429 *** 0.022
25 2021-06-01 to 2021-06-07 0.437 *** 0.022
26 2021-06-08 to 2021-06-14 0.434 *** 0.022
27 2021-06-15 to 2021-06-21 0.437 *** 0.022
28 2021-06-22 to 2021-06-28 0.443 *** 0.022
29 2021-06-29 to 2021-06-30 0.433 *** 0.022

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This table summarizes the results
from the leave-week-out analysis. We leave out one week at a time and per-
form IV regression with the newly constructed data. The dependent variable is
mobility in transit stations. The independent variables are vaccination, weather,
holidays, county fixed effect, and day fixed effect. Robust standard errors are
clustered by county.

5.3.8. Lag between Vaccination and Mobility. In the main analysis, we use a one-day lag

to examine the relationship between vaccination and mobility. In this robustness check, we examine

the potential influence of different lags between vaccination and mobility on the overall effect

size. More specifically, we modify equation (1) by replacing V accinationit−1 with V accinationit−k,
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where k is the length of the lag. The results of the analysis are summarized in Table 12 for lag

lengths of 0, 7, and 14. Regardless of the lag length, the results indicate that the coefficient of

V accination is positive and significantly different from zero at the 1% significance level, implying

that an increase in the lagged version of vaccination increases mobility.

Table 12 Results from the IV Regression (Different Lags)

Variable
0-Day Lag 7-Day Lag 14-Day Lag

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

Vaccination 0.431*** 0.022 0.488*** 0.024 0.543*** 0.026
Weather Included Included Included
Holiday Included Included Included
County Fixed Effects Included Included Included
Day Fixed Effects Included Included Included
Number of Observations 129,626 125,678 121,072
Adjusted R-Squared 0.816 0.817 0.819

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This table summarizes the results from the IV regression. The
dependent variable is mobility in transit stations. Independent variables are vaccination (with different
lags), weather, holidays, county fixed effects, day of week fixed effects, and month of year fixed effects.
Robust standard errors are clustered by county.

6. Heterogeneous Impacts of Vaccination

In this section, we examine the heterogeneous impacts of vaccination on demand for public trans-

portation, with a particular focus on vulnerable populations. The COVID-19 pandemic has exac-

erbated socioeconomic inequalities and exposed the issue of vaccine inequality, making it critical

to understand how vaccination affects mobility in light of such inequalities.

A recent cross-sectional study, analyzing over 4 million COVID-19 cases and 150,000 COVID-19

deaths, shows socioeconomic risk factors are linked with elevated COVID-19 incidence and mor-

tality rates (Karmakar et al. 2021). The disparity in vaccine coverage is also more pronounced

for COVID-19 vaccines than for seasonal influenza vaccines, and socioeconomic factors, such as

education level, play a significant role in vaccine disparities (Agarwal et al. 2021). Moreover,

socioeconomic factors influence mobility patterns and transportation choices, with disadvantaged

populations relying heavily on public transportation (Glaeser et al. 2008, Perchoux et al. 2014).

Given these complex relationships, considering the heterogeneity in treatment effects by incorpo-

rating key features of vulnerable populations, such as the percentage of the uninsured population

and the percentage of the population without a college degree, is important. These two features

signify socioeconomic disadvantages that may have far-reaching consequences, including, but not

limited to, affecting access to healthcare and accurate information, leading to differential vaccine

behaviors and transportation patterns. For example, research has demonstrated that individuals



Zhong, Wang, and Dai: Wheels on the Bus: Impact of Vaccine Rollouts on Demand for Public Transportation 23

with these disadvantages are less likely to follow vaccine recommendations and are more likely to

disobey stay-at-home orders (Lazarus et al. 2022, Lu et al. 2015, Wang 2022). To analyze these

impacts, we employ an IV regression, which considers the two aforementioned key features of the

vulnerable population. By incorporating these factors, we can gain a more comprehensive under-

standing of the heterogeneous impacts of vaccination on mobility, particularly among vulnerable

populations.

In our analysis, we use the modified 2SLS approach to examine the heterogeneous effects of

vaccination on mobility in the context of socioeconomic factors. This method allows us not only to

quantify the direct effect of vaccination on mobility, but also to gain a comprehensive understanding

of how the interaction between vaccination and the socioeconomic factors of the county affects

mobility. We chose this approach because it provides a more complete picture of the effect of

socioeconomic variables on the relationship between vaccination and mobility, which is essential for

understanding the heterogeneous effects of vaccination on mobility, especially among vulnerable

populations.14

To construct the socioeconomic indicator variable (SocioeconomicIndicator), we follow a two-

step process. First, we rank the counties based on certain socioeconomic variables, namely the

percentage of the uninsured population (PercentUninsured) and the percentage of the popula-

tion without a college degree (PercentNoCollegeDegree). Second, we divide the counties into

two groups using the medians of the socioeconomic variables to create the indicator variable

SocioeconomicIndicator.

Our modified 2SLS approach allows us to estimate the effects of vaccination and the interaction

between vaccination (V accination) and the socioeconomic indicator (SocioeconomicIndicator).

To address potential endogeneity concerns, we introduce an additional IV: the interac-

tion between our baseline instrument (V accineEligibility) and the socioeconomic indicator

(SocioeconomicIndicator). This modified approach allows us to estimate the impact of vaccination

on mobility while accounting for heterogeneity in treatment effects.

6.1. Heterogeneity across Insurance

In this section, we analyze the heterogeneous impacts of vaccination on public transportation

mobility across different health insurance groups. We used county-level data on the percentage

of the uninsured population, represented by PercentUninsuredi, and created a binary indica-

tor, HighPercentUninsuredi, based on the abovementioned methods. The results of this new

14 Another method for analyzing heterogeneous effects is to divide counties into two groups based on socioeconomic
factors and then run separate 2SLS regressions for each group. This alternative method allows one to compare the
coefficients of interest from each regression to identify heterogeneity across population groups. Using this aternative
method does not change the main conclusion of this analysis.
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IV regression are presented in Table 13. Our analysis shows the coefficient of V accination ×

HighPercentUninsured is positive and statistically significant at the 1% significance level, sug-

gesting counties with higher percentages of the uninsured population see a larger effect of vacci-

nation on mobility. A one-percentage-point increase in vaccination coverage in counties with lower

percentages of the uninsured population increases mobility in public transit stations by 0.366 per-

centage points, whereas counties with higher percentages of the uninsured population experience an

additional 0.139-percentage-point increase in mobility. The ratio of these coefficients reveals that

the effect of vaccination on mobility in public transit stations is approximately 0.139/0.366 = 40%

greater in counties with higher percentages of the uninsured population.

The uninsured population is of particular interest in our study because it faces numerous chal-

lenges, including limited access to healthcare and an increased risk of high medical costs due

to COVID-19 hospitalization (Ellingjord-Dale et al. 2022). These factors increase their vulnera-

bility to COVID-19 and decrease their confidence in using public transportation, which affects

their mobility. For example, in Collier County, Florida, a wealthy county with a high per-capita

income, the uninsured rate for people under 65 is estimated to be about 17.8%, significantly higher

than the national average of 9.8% (Census Bureau 2022b). Despite the county’s economic pros-

perity, a significant segment of the population remains uninsured. These workers, who constitute

a socioeconomically disadvantaged demographic, rely heavily on public transportation. Therefore,

understanding the impact of vaccination progress on their mobility becomes critical.

Our findings have important implications for policymakers and public health officials, who can

use these results to develop targeted interventions to improve the accessibility of COVID-19 vaccine

to the uninsured population and their demand for public transportation. Our results suggest that

focusing vaccination efforts on counties with higher percentages of the uninsured population may

lead to a greater reduction in the negative impact of the COVID-19 pandemic on public trans-

portation and, in turn, improve access to employment and overall quality of life for this population.

6.2. Heterogeneity across Education

To examine the relationship between educational attainment and the effect of vaccination on

mobility, we examine the percentage of the population in county i who have not completed

a college degree, denoted by PercentNoCollegeDegreei. We then create a binary indicator,

HighPercentNoCollegeDegreei, based on the abovementioned methods. The results of our IV

regression analysis, presented in Table 14, indicate the effect of vaccination on public transporta-

tion mobility is affected by the percentage of the population without a college degree in a county.

Specifically, the coefficient of V accination×HighPercentNoCollegeDegree is positive and statis-

tically significant at the 1% significance level, indicating that an increase in the percentage of the



Zhong, Wang, and Dai: Wheels on the Bus: Impact of Vaccine Rollouts on Demand for Public Transportation 25

Table 13 Results from the IV Regression for Heterogeneous Effect Analysis (Health Insurance)

Variable Coefficient Standard Error

Vaccination 0.366 ∗ ∗∗ 0.026
Vaccination × HighPercentUninsured 0.139 ∗ ∗∗ 0.043
Weather Included
Holiday Included
County Fixed Effects Included
Day Fixed Effects Included
Number of Observations 129,626
Adjusted R-Squared 0.816

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This table summarizes the results
from the modified IV regression. The dependent variable is mobility in transit
stations. Independent variables are vaccination, vaccination times the indica-
tor variable for counties with higher percentages of the uninsured population,
weather, holidays, county fixed effect, and day fixed effect. Robust standard
errors are clustered by county.

population without a college degree in a county leads to an increase in the impact of vaccination

on mobility. After controlling for other variables, our analysis suggests that a one-percentage-point

increase in vaccination coverage in counties with lower percentages of the population without a

college degree would correspond to a 0.334-percentage-point increase in mobility in public tran-

sit stations, whereas it would result in an additional 0.226-percentage-point increase in mobility

in counties with higher percentages of the population without a college degree. Specifically, by

calculating the ratio of the two effect, we find that the impact of vaccination is approximately

0.266/0.344 = 70% greater in counties with higher percentages of the population without a college

degree.

Our analysis provides a compelling narrative of the nuanced effect of COVID-19 vaccination on

mobility at public transit stations. We find that this effect is most pronounced in counties with

higher percentages of the population without a college degree, a finding with rich policy implica-

tions. To explore this phenomenon, one must consider the diverse occupational landscape across

educational attainment levels. The U.S. Bureau of Labor Statistics sheds light on this disparity,

noting that only 24% of individuals without a bachelor’s degree are employed in white-collar occu-

pations, including management, business, and financial operations. By contrast, that figure is 76%

for those with a bachelor’s degree or higher (Bureau of Labor Statistics 2022). The bifurcation in

the occupational distribution has implications for the ability to work from home, a critical factor

in the COVID-19 era. The Bureau’s survey data underscore this divide, showing that 69% of those

with a bachelor’s degree or higher enjoy the flexibility to work remotely, compared with 23% of

those without a college degree (Dey et al. 2020). The intertwined disparities in occupational dis-

tribution and telecommuting opportunities likely shape the mobility differences we observe across

counties with different educational profiles.
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Despite the widespread use of vaccines, those with a college degree may continue to shun public

transportation for their commutes. This is especially true during the period of our analysis, which

was marked by numerous work-from-home orders. Conversely, those without a college degree, who

often work in essential roles that require their physical presence, would experience a notable increase

in health confidence following vaccination.

The increased confidence could bolster confidence in public transport, which prior to the pan-

demic served as a vital link for socioeconomically disadvantaged communities. The transformative

potential of the vaccine, therefore, extends beyond its primary function of reducing the risk of

infection and hospitalization. It could foster increased demand for public transportation, a con-

sequential but often underappreciated benefit. Thus, the vaccine functions not only as a tool to

improve individual health, but also as a driver of change at the community level, particularly in

terms of increased use of public transportation systems.

Table 14 Results from the IV Regression for Heterogeneous Effect Analysis (Education)

Variable Coefficient Standard Error

Vaccination 0.334 ∗ ∗∗ 0.026
Vaccination × HighPercentNoCollegeDegree 0.226 ∗ ∗∗ 0.043
Weather Included
Holiday Included
County Fixed Effects Included
Day Fixed Effects Included
Number of Observations 129,626
Adjusted R-Squared 0.817

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This table summarizes the results
from the modified IV regression. The dependent variable is mobility in transit
stations. Independent variables are vaccination, vaccination times the indicator
variable for counties with higher percentages of the population without college
degrees, weather, holidays, county fixed effect, and day fixed effect. Robust
standard errors are clustered by county.

7. Concluding Remarks

The COVID-19 pandemic instigated a marked decline in demand for public transportation in

the U.S., leading to financial distress for governments and public transit agencies. This situation

led to corresponding measures, including limited service availability and route elimination. Such

changes pose significant challenges to a comprehensive and equitable recovery, most notably affect-

ing socioeconomically disadvantaged groups and low-income workers who heavily rely on public

transportation for both mobility and sustenance (Yen and Weber 2021).

Our study addresses potential endogeneity concerns in estimating the impact of COVID-19

vaccination on public transportation demand by using an IV and incorporating data from multiple
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sources. We find a one-percentage-point increase in the vaccination rate leads to a 0.435-percentage-

point increase in mobility at public transportation centers. Although this figure may appear modest,

it underscores the notion that vaccination alone cannot restore public transportation demand to

pre-pandemic levels. Additional measures such as increased route frequency, expansion of public

transit, and phased removal of work-from-home mandates may be required to further boost mobility

within the public transportation sector. Furthermore, our subsequent analysis reveals a nonlinear

and diminishing effect of vaccination on public transit mobility. This observation further emphasizes

that the influence of vaccination in isolation is limited.

Our heterogeneous effect analysis underscores the greater impact of vaccination on public transit

mobility in counties with higher percentages of the uninsured population and those with lower levels

of education. These findings highlight the need to address vaccine disparities among the socioe-

conomically disadvantaged population. Our study provides a compelling argument for targeted

efforts to increase vaccination coverage in these communities and highlights the potential spillover

benefits of such efforts in increasing demand for public transportation among key populations.

We emphasize the importance of rejuvenating public transportation options in sync with vaccine

rollouts, even before demand fully recovers. A paucity of public transit options could suppress

demand, potentially instigating long-term shifts toward private vehicle usage. Our research con-

tributes to better pandemic preparedness and response by highlighting the relationship between

vaccination and demand for public transportation. This understanding can guide policymakers and

public transportation agencies to devise strategies to cushion public transit systems from pandemic

impacts and ensure a more robust future response. This, in turn, safeguards the well-being of

socioeconomically disadvantaged communities heavily dependent on public transportation.

Although vaccination contributes to the recovery of public transport, it is not sufficient on

its own to fully restore ridership to pre-COVID levels. Additional policies or interventions are

needed to complement vaccination efforts and maximize the potential for public transport recovery.

These interventions may include lifting work-from-home orders, investing in public transportation

infrastructure, and implementing other demand or supply-side measures.
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Arifoğlu K, Deo S, Iravani SMR (2012) Consumption externality and yield uncertainty in the influenza

vaccine supply chain: Interventions in demand and supply sides. Management Sci. 58(6):1072–1091.

Aslim EG, Fu W, Liu CL, Tekin E (2022) Vaccination policy, delayed care, and health expenditures. Working

Paper No. 30139, National Bureau of Economic Research, Cambridge, MA.

Bartel AP, Chan CW, Kim SH (2020) Should hospitals keep their patients longer? The role of inpatient care

in reducing postdischarge mortality. Management Sci. 66(6):2326–2346.

Bertsimas D, Digalakis Jr V, Jacquillat A, Li ML, Previero A (2022) Where to locate COVID-19 mass

vaccination facilities? Naval Res. Logist. 69(2):179–200.
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