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A firm faces random demand for a service it delivers on a given future date. To boost demand, the firm hires

a sales agent who exerts unobservable effort continuously over time. The firm is concerned not only with

increasing current demand, but also with smoothing demand over time to avoid losing goodwill if realized

demand exceeds available inventory. We study the firm’s incentive design problem using a novel continuous-

time principal-agent framework, in which demand drifts over time in response to an agent’s unobserved effort

as well as the price the firm charges. To induce the agent’s sales effort, the firm chooses an incentive scheme

that depends on the remaining inventory and the time to the service (e.g., time to departure in the case of

airlines). We characterize the firm’s optimal incentive scheme under both static and dynamic pricing policies.

Using parameters calibrated from the airline industry, we numerically show that under dynamic pricing, using

a static incentive scheme helps the firm reap nearly all the benefits of the corresponding dynamic incentive

scheme. Using a fully static strategy, on the other hand, results in a significant loss of efficiency. We also

compare two partially dynamic strategies in which the firm uses dynamic pricing or dynamic contracting but

not both. We show that when inventory levels are high and the demand is inelastic, the dynamic-contracting-

only strategy outperforms the dynamic-pricing-only strategy; when inventory levels are low and the demand

is elastic, however, the dynamic-pricing-only strategy outperforms the dynamic-contracting-only strategy.

Finally, we analyze a case in which the firm operates on price segments and use our analytical framework to

gain insight into the firm’s choice of price level and length of each segment.
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1. Introduction

Firms across myriad service industries rely on sales agents to generate revenue. For example, in

2019, travel agencies remained the most popular sales channel for airline tickets, accounting for 44%

of total sales; air ticket sales through agents were “up and rising” (Montevago 2019). The COVID-

19 pandemic has proven the lasting value of travel agencies to customers and underlined their

crucial role in the post-pandemic recovery of the industry (Kiesnoski 2021). The ongoing digital

revolution has disrupted traditional business models and underscored the paramount importance of

motivating sales efforts through the design of appropriate incentives. Yet, in the context of service

industries where limited and perishable inventory is a hallmark, the problem of incentive design

for sales agents has not been formally examined.

1
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Two main reasons account for the lack of rigorous research on this important topic. First, gen-

erating sales entails matching supply with demand, which means supply must be adequate for

demand to translate into sales. The salesforce compensation literature (e.g., Basu et al. 1985, Lal

and Srinivasan 1993, Oyer 2000) focuses on designing incentive schemes to motivate a salesperson

to exert effort that boosts the demand for a product; the salesperson’s effort is unobservable to the

principal, so moral hazard arises. A major limitation of the literature is that almost all of it assumes

an unlimited inventory level, such that the entire demand can be fulfilled. Several recent papers

(e.g., Dai and Jerath 2013, Dai, Ke, and Ryan 2021, Li, Chen, and Rong 2020, Song and Xiao 2021)

overcome this limitation by imposing an inventory constraint but rely on a single-period model in

which the process of matching supply with demand is treated as a one-shot interaction, which does

not capture the intertemporal dynamics in the sales-generation process. Second, dynamic pricing

is the norm for the airline industry and others facing limited and perishable service capacity. Yet,

the salesforce compensation literature traditionally takes prices as static and exogenous. For these

reasons, existing theoretical frameworks are not suitable for modeling the salesforce compensation

problem in the service industry, such as airlines.

Methodology-wise, even a single-period moral hazard problem is challenging due to (1) its

infinite-dimensional optimization nature (Dai, Ke, and Ryan 2021, p. 2215) and (2) the contro-

versial validity of the commonly used first-order approach (Laffont and Martimort 2002, p. 200).

A discrete-time moral hazard model, which extends a single-period model to multiple periods, is

generally intractable and thus inappropriate for dynamic operations management problems (Plam-

beck and Zenios 2000, p. 240). Fortunately, continuous-time moral hazard models, as pioneered

by Sannikov (2008), can characterize the general contract form without suffering from the curse

of dimensionality and can decompose the dynamic principal-agent problem into a series of static

problems. This makes continuous-time models more suitable for providing clear characterizations of

optimal contracts and managerial insights that are not easily obtained from discrete-time principal-

agent models.

In this paper, we develop a continuous-time modeling framework to account for (1) incentive

design, (2) dynamic pricing, and (3) limited inventory. Our model reflects the view that customers

do not necessarily arrive all at once and sales generation occurs continuously over time. In this

continuous-time setting, the primary job of a salesperson is to boost demand, yet the desire of a

customer-centric firm goes beyond clearing its supply immediately. Reasonable service availability

and cumulative revenue over the whole selling period are important concerns for the firm. We seek

to answer the following research questions: (1) Under static pricing, how should the firm design

its incentive scheme? (2) Under dynamic pricing, how should the firm set its incentive scheme and
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price over time? (3) If the firm can only dynamically adjust either its incentive scheme or price

but not both, which dimension should the firm prioritize?

To motivate our model, consider an airline company’s sales process. For a flight on a given depar-

ture date, the airline company has its own sales channel and can observe its remaining inventory

and dynamically adjust its price to influence the demand process. In addition, the company works

with travel agents who interact with end customers and can thus use its incentive scheme to influ-

ence their sales efforts. As a one-off decision, the company’s problem can be viewed as determining

a booking limit that is higher than the capacity. However, the firm can keep track of bookings over

time and continuously adjust its prices and commission rates for sales agents. For example, Qantas

offers dynamic commissions that offer revenue opportunities for travel agents and induce dynamic

effort exertion.1 Because confirmed bookings may still be canceled prior to departure, airlines do

not necessarily stop accepting bookings once they have reached their capacity. Rather, in such a

case, the airline company has an opportunity to set a higher price or offer a lower-powered incentive

scheme to the agents.

Another motivating example entails a deal website that relies on sales representatives to promote

coupons for service providers. Generating excess demand is detrimental because, as Lee (2013,

p. 238) points out, “A salon and spa service requires dedicated personal attention of the service

provider. Therefore, excessive coupon sales create a scheduling nightmare and many customers

cannot get timely service”; a leading cause of complaints on Yelp is scheduling problems caused

by “over-capacity coupon sales”. Yet, “commission-based sales representatives may be tempted to

increase the number of coupons to sell beyond the capacity limit of the merchant”. Thus, the firm

has an opportunity to influence sales representatives’ promotional efforts by dynamically adjusting

the incentive scheme based on the remaining inventory.

Our analysis starts with the case of static pricing. We model the demand for the service as an

arithmetic Brownian motion process with drift determined by the agent’s unobserved effort level.

The agent is effort averse and responds to a continuous-time incentive scheme provided by the firm.

We characterize the solution to the firm’s optimal incentive design problem and show the optimal

incentive depends on both the remaining inventory and the time to service delivery. We prove that

at any given time, the firm’s value function is concave in the remaining inventory level. In other

words, the firm faces a declining marginal value for each additional unit of inventory. Furthermore,

the optimal sales incentive increases with the remaining inventory level, and the trajectory of the

incentive can be rather volatile. We provide examples in which the optimal sales incentive surges

toward the end of the time horizon.

1 https://bit.ly/qantasdc.

https://bit.ly/qantasdc


4 Zuo, Dai, and Keppo: Incentive Design and Pricing under Limited Inventory

Next, we consider a problem in which the firm can dynamically adjust both its incentive scheme

and price. In this more general setting, the firm’s demand follows an arithmetic Brownian motion

process with drift determined by the price that the firm charges to end customers as well as the

agent’s unobserved effort level. The firm thus has two levers—its incentive scheme offered to the

agent and its price—to influence the demand process. These two levers do not perfectly substitute

for each other, because the agent’s effort is unobservable, necessitating the firm’s rent sharing with

the agent, whereas the firm can unilaterally change its price at no cost (other than the change

in the revenue rate). We observe that under dynamic pricing, the expected optimal incentive is

relatively stable over the time horizon. Related to this observation, we show that under dynamic

pricing, a static incentive scheme (i.e., a dynamic-pricing-only strategy) provides the firm with

most of the benefits of a dynamic incentive scheme (i.e., a fully-dynamic strategy). Our finding is

consistent with the observed practice in the airline industry that whereas firms routinely engage in

dynamic pricing, the incentive schemes used for compensating sales agents are mostly static and

do not typically vary over time (see, e.g., Alamdari 2002, Elmaghraby and Keskinocak 2003).

Realizing that a fully dynamic strategy can be challenging to implement in practice, we compare

the performance of two partially dynamic strategies, under which either the pricing or contracting

policy (but not both) is dynamic. Between these two partially dynamic strategies, the dynamic-

pricing-only strategy outperforms the dynamic-contracting-only strategy under (1) a low initial

inventory constraint and (2) a high price effect, and underperforms under (1) a high initial inventory

constraint and (2) a low price effect. These findings provide guidance about how a partial dynamic

strategy may fit into a firm, depending on the industry landscape it operates in.

Lastly, we demonstrate the value of the dynamic incentive scheme by re-examining the case of

static pricing. We show that under static pricing, a static incentive scheme leads to a substantial

efficiency loss compared with the corresponding dynamic incentive scheme. In other words, in the

case in which service providers do not have price-setting power (e.g., due to market competition

or regulatory constraints), a dynamic incentive structure offers a highly effective lever for the firm

to boost and smooth customer demand.

To our best knowledge, our paper is the first in the literature to study a continuous-time incentive

design problem with inventory and pricing considerations. In doing so, we develop a novel modeling

framework that is applicable to problems facing the airline, hotel, and travel industries, among

others. The rest of the paper is organized as follows. Section 2 briefly reviews the related literature.

Sections 3 and 4 study incentive schemes under static and dynamic pricing, respectively. Section 5

compares the incentive schemes under static and dynamic pricing in the airline industry. Section 6

analyzes the case in which the firm operates on price segments. Finally, Section 7 concludes the

paper. All proofs are in the appendix.
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2. Literature

The vast majority of the moral hazard principal-agent theory literature, consistent with seminal

papers such as those by Grossman and Hart (1983) and Holmstrom (1979), focuses on a one-shot

interaction between a principal and an agent; see Laffont and Martimort (2002) for a comprehen-

sive review of the literature. Departing from this tradition, in a seminal paper, Sannikov (2008)

develops a continuous-time principal-agent framework that is applicable to a wide range of manage-

rial settings. Building on the work by Sannikov (2008), the operations management and marketing

literature has studied the incentive design problem for salesforce compensation (e.g., Rubel and

Prasad 2016) and service contracting (e.g., Sun and Tian 2018). Our model builds on the frame-

work developed by Sannikov (2008) (and in the ensuing literature) but has several distinguishing

features. First, in our model, the sales outcome is constrained by a finite inventory level; if the

materialized demand exceeds the inventory level, the firm may incur a cost of goodwill. Thus,

unlike Sannikov (2008), we consider a situation in which the firm’s profit is non-monotone in the

demand generated by the agent. Second, we consider a case in which the firm can use dynamic

pricing to influence demand, in addition to the dynamic compensation contract as studied by San-

nikov (2008). Third, and perhaps most importantly, in contrast to the infinite-horizon established

in the work by Sannikov (2008), we consider a finite-horizon continuous-time model with limited

inventory, two key features facing many service industries.

Our paper also contributes to a stream of operations management literature that examines

moral hazard and—more broadly—incentive design problems, including, for example, Alp and Şen

(2021), Atasu, Ciocan, and Désir (2021), Baiman, Netessine, and Saouma (2010), Balachandran

and Radhakrishnan (2005), Dai and Jerath (2013, 2016), Dai, Ke, and Ryan (2021), de Véricourt

and Gromb (2018, 2019), Ke and Ryan (2018), Li, Chen, and Rong (2020), Long and Nasiry (2020),

Nikoofal and Gümüş (2018), Plambeck and Zenios (2000, 2003), Serpa and Krishnan (2017), Song

and Xiao (2021), and Yu and Kong (2020). Among these papers, the work by Plambeck and

Zenios (2003) is a rare case with a continuous-time setup. They study a make-to-stock setting in

which the principal employs an agent who chooses an unobservable production rate. The principal

seeks to minimize the cost of holding inventory and backordering demand and uses an incentive

contract that depends on the inventory level. Our paper differs from theirs in that we use a more

standard continuous-time principal-agent framework that was developed by Sannikov (2008), and

we consider a setting with perishable inventory that is prevalent in service industries. Dai and

Jerath (2013, 2016) and Dai, Ke, and Ryan (2021) study the effect of demand censoring, which

arises when demand in excess of inventory cannot be observed, on incentive design in a setting in

which a principal and an agent interact exactly once. Different from this stream of literature that
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treats prices as exogenous and fixed, our paper builds on a rigorous continuous-time principal-agent

framework that examines both incentive design and pricing decisions.

In the past few decades, an extensive literature on dynamic pricing under limited inventory

has emerged; see Elmaghraby and Keskinocak (2003) for a review. Dynamic pricing has been a

standard modeling feature in the large body of pricing and revenue management literature (e.g.,

Phillips 2005, Talluri and Ryzin 2005). We refer the reader to Chung, Ahn, and Chun (2021), den

Boer and Keskin (2021), Harrison, Keskin, and Zeevi (2012), and Lei and Jasin (2020) for examples

of recent advances and reviews of the literature. To our best knowledge, this literature does not

consider the case in which the firm employs sales agents to influence demand. Accordingly, our

paper incorporates an important consideration that this literature has overlooked—moral hazard

in the sales-generation process. In doing so, our paper establishes a novel link between dynamic

pricing and the moral hazard principal-agent theory.

Methodology-wise, our paper uses optimal control, which, despite its numerous applications

in economics, marketing, and operations management (e.g., Sethi and Thompson 2000), remains

uncommon in solving moral hazard problems, with an exception being the recent paper by Dai,

Ke, and Ryan (2021). In addition, our paper is related to the economics and finance literature

using stochastic calculus (e.g., Décamps et al. 2016, Keppo, Moscarini, and Smith 2008a). For

example, as in Décamps et al. (2016), our monotonicity analysis derives from Ito’s lemma, which is

commonly used in mathematical finance. Our paper enriches this literature by connecting revenue

management and moral hazard in a continuous-time setting.

3. Incentive Design under Static Pricing

A firm (i.e., the principal) hires a sales agent (i.e., the agent) to boost the demand for a service

(e.g., air flight) offered at time T . At the beginning of the time horizon, that is, t= 0, the principal

has an inventory level I0.2 All the inventory will expire after time T . The firm cannot add new

inventory at any time t∈ (0, T ].

A standard Brownian motion B = {Bt,Ft; 0≤ t≤ T} on {Ω,F ,Q} characterizes the uncertainties

in the demand process. Specifically, Dt, the cumulative demand quantity for the product up to

time t∈ [0, T ], evolves according to

dDt = (a+At)dt+σdBt, (1)

where a corresponds to the firm’s demand rate through its own sales channel, At ≥ 0 is the agent’s

effort level, and σ is a constant diffusion term, which measures the volatility of the demand-

generation process. The Brownian motion term (σdBt) may lead to a negative drift in the demand

2 The inventory level I0 is exogenous in this model. The inventory I0 can be extended to be endogenous and added
as an optimization problem to the principal’s objective function.
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quantity, which corresponds to cancellations.3 The agent’s effort level A= {At,0≤ t≤ T}, which

is a stochastic process by itself. The agent is effort-averse and incurs a cost of c(At) = A2
t/(2η),

where the parameter η may be interpreted as the agent’s effectiveness. The cost function implies

the agent’s cost of effort is convex and rising in At.

Several dynamic pricing and revenue management papers model demand quantity with a

continuous-time Poisson process (see, e.g., Farias and Van Roy 2010). Bardina, Jolis, and Rovira

(2000) show the Poisson process can be approximated by a stochastic process driven by a Brow-

nian motion.4 In this paper, we model the demand process directly with the arithmetic Brownian

motion process in (1).5

At any time t ∈ [0, T ], the principal observes the cumulative demand up to time t (Dt) but not

the agent’s effort At. The sales up to time t is St = min{Dt, I0}, and the available inventory level

is I0−St.6 Because the agent’s effort is unobservable to the principal, moral hazard arises.

Next, we consider the firm’s and the agent’s objective functions. We denote by ξT the com-

pensation plan that the firm offers the agent. Stated differently, at t = 0, the firm commits to a

take-it-or-leave-it compensation plan that leads to a terminal payoff of ξT that depends on the

demand process D; the agent receives a payoff of ξT at the terminal time T if the agent accepts

the compensation plan. Both the firm and the agent are risk neutral and share the same discount

rate r; see Keppo, Touzi, and Zuo (2021) for the case in which the agent is risk averse. The agent

chooses optimal effort A= {At,0≤ t≤ T} by maximizing his expected utility:

V a = sup
{At}{0≤t≤T}

E

[
e−rT ξT −

∫ T

0

e−rtc(At)ds

]
, (2)

and we write the agent’s value function at any time t∈ [0, T ] as

V a
t = sup

{As}{t≤s≤T}
E

[
e−r(T−t)ξT −

∫ T

t

e−r(s−t)c(As)ds

]
, (3)

where ξT denotes the agent’s terminal payoff, which is specified by some stochastic process depen-

dent on the demand process D. The expectations in (2) and (3) are taken under the demand

3 Our model abstracts from the strategic behavior of consumers whose cancellation decision may be driven by dynamic
pricing. The focus of this paper is on the interaction between the principal and the agent, and potential strategic
behavior of end consumers is beyond our scope.

4 More generally, Brownian-motion-driven stochastic processes can approximate models with multiple small indepen-
dent and identically distributed changes (see, e.g., Keppo, Moscarini, and Smith 2008b).

5 Following the convention of the continuous-time moral hazard literature (e.g., Sannikov 2008), we use an arithmetic
Brownian motion to capture demand uncertainty. Our main insights extend to the case of a geometric Brownian
motion.

6 In our model, inventory information is available to the firm but does not directly influence the agent’s effort decision
process. The firm dynamically adjusts the incentive it provides to the agent based on the remaining inventory, and the
incentive directly drives the agent’s effort decision process. Whether the agent has access to the inventory information
does not affect our analysis.
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dynamics (1). Given an initial condition Y0 ∈R, we introduce the agent’s payoff process Y Z , which

satisfies ξT = Y Z
T :

Y Z
t = Y0 +

∫ t

0

(
ZsdDs−Ha(Zs)ds+ rY Z

s ds
)

for all t∈ [0, T ], (4)

where Y0 is a constant and its value is restricted to be greater than or equal to ρa, the agent’s

reservation utility (i.e., outside option). In (4), Ha(z) is the Hamiltonian function corresponding

to the agent’s value function (3):

Ha(z) = sup
At

h(z,At), (5)

where h(z,A) = (a+At)z − c(At). Here, (a+At)z is the instantaneous payment that the agent

receives, c(At) is the instantaneous cost of the agent’s effort, and thus, h(z,A) is the instantaneous

profit of the agent. The agent maximizes the profit function h(z,A) at each instant of time, which

gives the Hamiltonian function in (5). We denote the optimizer of (5) as Ât(z). Because c(At) =

A2
t/(2η), using the Hamiltonian maximizing condition (see, e.g., Sethi and Thompson 2000), we

obtain the optimal effort and the corresponding Hamiltonian function:

Ât(z) = ηz and Ha = ηz2/2 + za. (6)

By (4), the incentive variable is denoted by Zt, which can be viewed as the instantaneous incentive

that the firm provides to the agent based on the cumulative demand up to time t (i.e., Dt). Thus,

the incentive variable Zt specifies the agent’s value function changes with respect to the demand

process D and the incentive process {Zt} is controlled by the firm: a higher Zt provides a stronger

incentive for the agent to exert sales effort, which boosts the expected demand.

The agent’s terminal payoff ξT = Y Z
T in (4) consists of a constant component Y0 and an incentive

component, which is linear in the demand process D. The constant term Y0 is the agent’s base pay.

As long as the base pay is no less than the agent’s outside option (i.e., Y0 ≥ ρa), the agent accepts

the contract and participates. The process Y tracks the agent’s future utility, which is often referred

to as the “promised utility” in the literature (see, e.g., Ljungqvist and Sargent 2004). Furthermore,

as in the case of Sun and Tian (2018), Yt can be viewed as the agent’s performance score, which

determines the agent’s utility from continuing to work for the firm. In fact, by Cvitanić, Possamäı,

and Touzi (2017), all contracts that satisfy the agent’s participation constraint can be represented

as ξT = Y Z
T in (4). Thus, the payoff process (4) characterizes the agent’s compensation in our model.

For ease of reference, we summarize in Table 1 the notation used in the paper.

Without loss of generality, we normalize the unit price to 1. The firm’s problem is to choose the

optimal agent’s contract ξT to maximize its expected profit, as represented by

V p = sup
ξT

E

[∫ T

0

e−rtdDt− e−rT ξT −π · e−rT (DT − I0)
+

]
,
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Table 1 Notation

At The agent’s effort level at time t
a The demand rate through the firm’s own sales channel
ξT The agent’s terminal payoff
Dt Cumulative demand quantity at time t
St Sales level up to time t
Zt Incentive variable at time t, denotes the agent’s incentive pay to

performance
T Terminal time
I0 Initial inventory level
pt Proportion of the price at time t
r Discount rate
η The agent’s level of effectiveness
π Overbooking penalty parameter
σ Volatility of demand
α Effect of price on the demand process
β Effect of effort on the demand process
Γ Static commission contract
b0 Static commission fee

where the expectation is taken under the dynamics (1) with the agent’s optimal effort and π is

the overbooking penalty parameter and π > 1, meaning the overbooking penalty is greater than

the unit price. The incentive compatibility (IC) constraint is the agent’s optimization problem,

and thus, the IC constraint is reflected in the demand dynamics (1). At a given time t∈ [0, T ], the

firm’s expected profit is

V p
t = sup

ξT

E

[∫ T

t

e−r(s−t)dDs− e−r(T−t)ξT −πe−r(T−t) (DT − I0)
+

]
. (7)

Next, we solve for the agent’s optimal effort level and the firm’s optimal compensation plan

throughout the time horizon. The following proposition states that the agent’s value function (3)

coincides with the process (4) under contract ξT and shows the explicit form of the agent’s optimal

effort. The proof of this result is in the appendix.

Proposition 1. Under the contract representation ξT = Y Z
T , the agent’s value function V a

t ≤ Y Z
t

for all t∈ [0, T ], and the inequality is binding when the agent’s effort is given by (6).

Proposition 1 shows the agent’s optimal effort can be derived using the Hamiltonian function (6).

More specifically, given incentive Zt at any time t, the agent’s optimal effort is linear in the incentive

variable Zt; that is, Ât(Zt) = ηZt.

Lemma 1. Given the payoff process characterized in (4) with terminal payoff ξT = Y Z
T , the

agent’s value function evolves according to

dV a
t = [−rV a

t +Ha(Zt)]dt+ZtdDt. (8)
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Lemma 1 sheds light on the agent’s dynamic contract. The basic idea is that by (3), the agent’s

contract payoff depends on the value function, V a
T = ξT . As in Cvitanić, Possamäı, and Touzi (2017)

and Keppo, Touzi, and Zuo (2021), we consider an agent’s contract induced by the firm that

solves a dynamic program. Our setup differs from Sannikov (2008)’s in that we consider a finite-

time horizon and a limited capacity, whereas he considers an infinite-time horizon and imposes no

capacity limits on the agent’s output.

Given the agent’s contract ξT = Y Z
T , to motivate the agent to induce the desired effort level to

boost the demand, the firm’s problem is reduced to optimizing the process {Zt}, for 0≤ t≤ T ,

V p = sup
{Zt}t∈[0,T ],Y0≥ρa

E

[∫ T

0

e−rtdDt− e−rT ξT −πe−rT (DT − I0)
+

]
,

where the expectation is taken under the dynamics (1) with the agent’s optimal effort, and ξT is

given by (4).

Without loss of generality, we normalize both the agent’s reservation utility ρa (i.e., outside

option) and the demand effect of the firm’s own sales a to zero, ρa = 0 and a= 0. Then, the firm’s

problem is given by

V p = sup
{Zt}t∈[0,T ],Y0≥0

E

[∫ T

0

e−rtdDt− e−rTY Z
T −πe−rT (DT − I0)

+

]
,

which, by (1), (4), and (6), can be written as

V p = sup
{Zt}t∈[0,T ]

E

[∫ T

0

e−rtηZtdt−
∫ T

0

(e−rtηZ2
t /2)dt−πe−rT (DT − I0)

+

]
, (9)

where the optimal Y0 is equal to the normalized participation level (ρa = 0), that is, Y0 = 0. The

firm’s expected profit function at t∈ [0, T ] is given by

V p
t = sup

{Zs}s∈[t,T ]

Et

[∫ T

t

e−r(s−t)
(
ηZs− ηZ2

s/2
)
ds−πe−r(T−t) (DT − I0)

+

]
.

Because V p
t is a function of time t and demand Dt, by Ito’s lemma, we obtain the following

Hamilton-Jacobi-Bellman (HJB) equation:

0 = sup
Zt

{(
ηZt− ηZ2

t /2
)
− rV p

t +
∂V p

t

∂t
+
∂V p

t

∂D
ηZt +

1

2

∂2V p
t

∂D2
σ2

}
. (10)

From (10) we get the following theorem, which specifies the optimal incentive variable.

Theorem 1. The optimal incentive variable Zt is given by arg supZt

{
ηZt− 1

2
ηZ2

t +
∂V

p
t

∂D
ηZt

}
for all t∈ [0, T ].

We denote the firm’s optimal incentive variable by Z∗t . Note from (4) that Z∗t provides the optimal

compensation plan the firm offers to the agent.
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3.1. Numerical Illustration

We use a numerical example to illustrate the firm’s optimal incentive design problem (9) using

a tree-grid method (Kossaczkỳ, Ehrhardt, and Günther 2019). Figure 1 shows how the optimal

incentive variable Zt and cumulative demand Dt evolve over time. Although the demand increases

rather steadily over time, the trajectory of the optimal incentive variable can be volatile, especially

when approaching the end of the time horizon. The dynamic contract is implemented as follows.

The incentive variable Zt is state dependent; that is, based on the realized demand quantity Dt

at time t, the agent is provided with the incentive variable Zt(Dt) that can be interpreted as a

piece rate at time t and influences the payoff process in (4) with terminal condition ξT = Y Z
T . Thus,

the compensation ξT is the cumulative piece rate plus a fixed component, and the agent receives

the compensation at time T . For instance, path 1 in Figure 1 shows the incentive variable Zt

changes dynamically as a function of the realized demand Dt. When the demand quantity of path

1 approaches the inventory constraint, the agent is provided with a low incentive Zt and responds

by lowering the sales effort.
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(c) Payoff process versus time

Figure 1 Incentive, demand quantity, and payoff processes with respect to time. Parameter values: r = 0.025,

η= 8, I0 = 10, σ= 2, and π= 2.

Next, we conduct comparative statics in terms of demand volatility σ, salesforce effectiveness

η, and the discount rate r. Figure 2 shows the average incentive decreases in demand volatility σ.

Two observations about Figures 3 and 4 may be made:

Observation 1 The average effort first increases then decreases in the agent’s effectiveness η.

At the beginning of the time horizon, the firm faces ample inventory and desires a high sales effort

level to help clear the inventory. Accordingly, it provides a more effective sales agent with a higher-

power compensation plan, leading to higher cumulative demand and lower remaining inventory.

Approaching the end of the time horizon, however, the firm is more concerned about overbooking;

in view of the diminishing remaining inventory, it provides a more effective sales agent with a

lower-power compensation plan (as shown in Figure 3(a)).
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Observation 2 In the early part of the time interval [0, T ], the average incentive increases in the

discount rate r, and in the latter part of the time interval, the average incentive decreases in r.

A large discount rate means the firm strongly prefers earlier sales to later sales. For this reason,

it provides a higher-powered compensation plan to boost the demand for the service. Thus, the

incentive first increases in the discount rate r. Because demand increases rapidly under high dis-

count rates, the firm prefers slower cumulative demand growth toward the end of the horizon to

avoid overbooking. Stated differently, as the service date approaches, the incentive decreases in the

discount rate r (as shown in Figure 4(a)).
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(b) The firm’s expected profit versus demand
volatility σ

Figure 2 Incentive and the firm’s expected profit for different demand volatility σ. Parameter values: r= 0.025,

η= 8, I0 = 10, and π= 2.
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(b) Agent’s effort versus time
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(c) The firm’s expected profit versus
agent’s effectiveness

Figure 3 Incentive, agent effort, and the firm’s expected profit for different levels of salesforce effectiveness η.

Parameter values : r= 0.025, I0 = 10, σ= 2, and π= 2.
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(b) The firm’s expected profit versus discount
rate

Figure 4 Incentive sensitivity and the firm’s expected profit for different discount rate r. Parameter values: η= 8,

I0 = 10, σ= 2, and π= 2.

3.2. Structural Properties

We now present structural results that connect various market-environment variables to the firm’s

maximum profit (9) and optimal incentive scheme in Theorem 1.

First, we investigate the effect of the overbooking-penalty parameter and the initial inventory

level on the firm’s maximum profit.

Proposition 2. The firm’s expected profit function V p
t is (i) weakly decreasing in its

overbooking-penalty parameter π, and (ii) weakly increasing in its initial inventory level I0.

As the overbooking penalty π increases, the firm is more concerned with situations in which

the realized demand is greater than the supply (i.e., the inventory). Thus, all else being equal,

the firm provides a lower-powered incentive scheme to its sales agent, which reduces the firm’s

expected sales and profit. As the initial inventory level I0 increases, however, the firm has more

supply to satisfy the demand and is less likely to overbook, all else being the same, which increases

its expected profit.

The next proposition gives the concavity of the firm’s profit with respect to the cumulative

demand. We illustrate the proposition in Figure 5.

Proposition 3. For any time t ∈ [0, T ], the firm’s expected profit function V p
t is concave and

decreasing in the cumulative demand Dt.

As the cumulative demand Dt increases, the firm’s remaining inventory level (i.e., (I0 −Dt)
+)

decreases. All else being the same, the firm’s expected profit decreases. Consistent with this intu-

ition, Proposition 3 states that the firm’s expected profit decreases in the cumulative demand. On

the flip side, the firm’s expected profit increases in the remaining inventory. Meanwhile, Propo-

sition 3 states that the firm faces a declining marginal value of an additional unit of inventory,
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Figure 5 The effect of cumulative demand on the firm’s expected profit V p
t . Parameter values: r= 0.025, η= 8,

I0 = 10, σ= 2, π= 2, T = 1, and t= 0.5.

because translating a unit of inventory into sales becomes increasingly costly due to the moral

hazard and the overbooking penalty.

The following proposition shows how the optimal incentive variable varies in the cumulative

demand and the overbooking penalty.

Proposition 4. The optimal incentive variable Z∗t decreases in the cumulative demand Dt and

the overbooking penalty π.

Proposition 4 states that the firm should reduce the incentive it offers to the agent when facing a

lower inventory level (as a result of a higher cumulative demand) or a higher overbooking penalty.

The single crossing property and monotone comparative statics (see, e.g., Milgrom and Shannon

1994) are the most commonly used methods in economics for comparative statics. Departing from

these standard methods, our monotonicity analysis in Proposition 4 derives from the HJB equation

in (10) and Ito’s lemma, simlarly to Décamps et al. (2016). The basic idea underlying the proof of

Proposition 4 (see the appendix) is to represent the firm’s expected profit function V p
t as a function

of parameter π and then take the first-order derivative with respect to π. To do so, we substitute

the optimal incentive variable Zt given by Theorem 1 into the HJB equation (10) and use Ito’s

lemma to establish Proposition 4.

4. Incentive Design under Dynamic Pricing

So far, we have assumed the price is exogenously given and focused on the case in which the

demand process follows an arithmetic Brownian process, with drift solely dependent on the agent’s

unobservable effort. We now extend the model to allow the drift to be dependent on both the

agent’s effort and the firm’s selling price. In this case, the firm’s problem consists of (i) designing
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the incentive for the agent and (ii) selecting a dynamic pricing policy for the product (or the

service).

We start with the demand model. Let pt denote the price of the product at time t, and thus,

{pt}t∈[0,T ] is the price process. Without loss of generality, pt is scaled and restricted to be in the

range (0,1] at any time t∈ [0, T ]. The cumulative demand quantity follows

dDt = [α(1− pt) +βAt]dt+σdBt, (11)

where σ > 0 is the volatility of the demand, and α ≥ 0 and β ≥ 0 capture the effects of price pt

and agent’s effort At on the demand quantity, respectively. Related to (1), the term α(1− pt) in

the drift term captures the price effect for both the firm’s own sales channel and the agent. The

Brownian motion term (σdBt) may lead to negative changes in the cumulative demand, which

corresponds to cancellations.

Given the agent’s compensation process defined in (4), the agent’s terminal payoff satisfies ξT =

Y Z
T . Corresponding to the demand process (11) and the agent’s value function (3), the Hamiltonian

function is as follows:

Ha(z) = sup
At

h(z,At), (12)

where h(z,A) = z [α(1− pt) +βAt]− c(At). Similar to (5), the agent maximizes the profit function

h(z,A) at each instant of time, which gives the Hamiltonian function in (12). We obtain the optimal

agent’s effort

Ât(z) = ηβz and Ha = ηβ2z2/2 + zα(1− pt). (13)

By (6), the payoff process Y Z in (4) can be reformulated as

Y Z
t = Y0 +

∫ t

0

(
ηβ2Z2

s/2 + rY Z
s

)
ds+ZsσdBs for all t∈ [0, T ]. (14)

The firm’s value function is given by

V p = sup
{pt}t∈[0,T ],ξT

E

[∫ T

0

e−rtptdDt− e−rT ξT −πe−rT (DT − I0)
+

]
(15)

= sup
{pt}t∈[0,T ],{Zt}t∈[0,T ],Y0≥ρa

E

[∫ T

0

e−rtptdDt− e−rTY Z
T −πe−rT (DT − I0)

+

]
,

which, after substituting Dt and Y Z
T with (11) and (14), respectively, can be rewritten as

V p = sup
{pt}t∈[0,T ],{Zt}t∈[0,T ]

E

[∫ T

0

e−rt(ptηβ
2Zt +αpt−αp2

t )dt−
(
ρa +

∫ T

0

e−rtηβ2Z2
t /2dt

)
− πe−rT (DT − I0)

+
]
, (16)
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where the optimal Y0 is equal to the normalized participation level (ρa = 0); that is, Y0 = 0. The

expectation is taken under the dynamics (11) with the agent’s optimal effort Ât(Zt) in (13). The

IC constraint is the agent’s optimization problem, and thus, the IC constraint is reflected in the

demand dynamics (11). The firm’s expected profit function at t∈ [0, T ] is given by

V p
t = sup

{ps}s∈[t,T ],{Zs}s∈[t,T ]

Et

[∫ T

t

e−r(s−t)
(
psηβ

2Zs +αps−αp2
s− ηβ2Z2

s/2
)
ds−πe−r(T−t) (DT − I0)

+

]
= sup
pt,Zt

(
ptηβ

2Zt +αpt−αp2
t − ηβ2Z2

t /2
)

∆t

+(1− r∆t)
[
V p
t +

∂V p
t

∂t
∆t+

∂V p
t

∂D
(ηβ2Zt +α−αpt)∆t+

1

2

∂2V p
t

∂D2
σ2∆t

]
+O

(
(∆t)2

)
, (17)

where ∆t is a small time change and O(·) represents the rate at which the function approximates

the actual value. Then, we have the following HJB equation:

sup
pt,Zt

{(
ptηβ

2Zt +αpt−αp2
t − ηβ2Z2

t /2
)
− rV p

t +
∂V p

t

∂t
+
∂V p

t

∂D
(ηβ2Zt +α−αpt) +

1

2

∂2V p
t

∂D2
σ2

}
= 0,

(18)

which gives the following theorem.

Theorem 2. The firm’s optimal incentive variable Zt and optimal price pt are given by

arg sup
Zt,pt

{(
ptηβ

2Zt +αpt−αp2
t − ηβ2Z2

t /2
)

+
∂V p

t

∂D

(
ηβ2Zt−αpt

)}
for all t∈ [0, T ]. (19)

Theorem 2 leads to several structural properties. First, we obtain the following result.

Proposition 5. The firm’s expected profit function V p
t decreases in the overbooking penalty π.

To derive structural properties of the firm’s optimal price and compensation plan, we make the

following assumption in the rest of this section.

Assumption 1. The price effect is bounded below; more specifically, α> ηβ2.

The above condition indicates that price changes have a sufficiently large effect on demand; that

is, customer demand is sufficiently elastic. (Later, in Section 5, we show the model parameters

calibrated from the airline industry satisfy this condition.)

Next, we examine the concavity of the firm’s expected profit function with respect to cumulative

demand Dt.

Proposition 6. The firm’s expected profit function V p
t is concave and decreasing in cumulative

demand Dt.

As in Figure 5, a lower cumulative demand level (Dt) means a higher remaining inventory level

(I0−Dt)
+; thus, the firm faces a higher future sales potential. Furthermore, the marginal value of

the inventory level decreases, which gives rise to the concavity property.

The following proposition describes how the optimal incentive variable changes with respect to

the cumulative demand and the overbooking penalty.
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Proposition 7. Under a dynamic pricing and dynamic contracting strategy,

(i) the optimal incentive variable Z∗t decreases in both the cumulative demand Dt and the unit

overbooking penalty π;

(ii) the optimal price p∗t increases in both the cumulative demand Dt and the unit overbooking

penalty π.

As the cumulative demand Dt increases, less inventory becomes available. Then, the firm has a

lower incentive to boost its demand. Accordingly, it does not lower the price or provide a higher

incentive to the agent. As the overbooking penalty parameter π increases, the firm is motivated

to avoid overbooking by inhibiting demand growth. Therefore, the optimal incentive variable Z∗t

decreases and the optimal price p∗t increases in the unit overbooking penalty π.

4.1. Does a Static Incentive Contract Suffice?

We now illustrate the firm’s optimal pricing and incentive decisions with a numerical example in

Figure 6. In the view of Figure 6, the firm dynamically adjusts its incentive scheme and selling price

to manage its revenue while avoiding overbooking. Path 1 in Figure 6, for example, corresponds to

the case in which the optimal price is greater than the baseline price (normalized to one). Whereas

higher prices reduce the likelihood of overbooking, they also inhibit demand growth; thus, the

optimal price is not always greater than the baseline price.

We observe from Figure 6 that under dynamic pricing, the expected optimal incentive is relatively

stable. This observation brings up the question of how a partially dynamic strategy performs in

comparison to the fully dynamic strategy. (Note airline companies have used a partially dynamic

strategy, because they are known to use dynamic pricing but do not frequently adjust their incentive

schemes for sales agents.) As such, we examine whether a static incentive contract is sufficient

when the firm adjusts its price dynamically.

Consider the case in which the firm offers the agent a static commission contract in the form

of Γ = a0 +
∫ T

0
e−r(t−T )b0dDt; by substituting ξT in (3) with the static commission contract Γ,

the agent’s optimal response to this static contract is given as the optimizer to the agent’s value

function in (3), i.e., the optimal effort is given by â= ηβb0. We can numerically solve the optimal

incentive scheme and pricing policy under this static contract. (Note a0 can be determined by

the agent’s reservation utility.) As Figure 7(a) illustrates, the performance gap between a fully

dynamic strategy (dynamic contracting with dynamic pricing) and a partially dynamic strategy

(static contracting with dynamic pricing) is below 13%, meaning that using dynamic pricing alone

can achieve most of the benefits of a fully dynamic strategy.

This observation has important implications because implementing a fully dynamic strategy is

challenging in certain cases. In the airline industry, for example, whereas firms commonly adjust
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(d) Payoff process versus time

Figure 6 Incentive, price, demand quantity and payoff process with respect to time. Parameter values: r= 0.025,

η= 8, I0 = 10, σ= 2, α= 15, β = 1, and π= 2.

their fare prices rather frequently, implementing a change in the way they compensate sales agents

is not a straightforward process (see, e.g., Alamdari 2002, Elmaghraby and Keskinocak 2003). This

observation means that when dynamic pricing is possible, the firm can still manage to extract most

of the benefits from a fully dynamic strategy.

To be certain, dynamic contracting can be advantageous when a firm lacks control over pricing

(e.g., due to market competition or regulatory reasons). The example in Figure 7(b) demonstrates

the value of dynamic contracting in the presence of static pricing. In this case, we show relying on

a static (albeit optimized) incentive scheme can result in a significant loss of efficiency.

5. Comparison across Strategies

When a fully-dynamic strategy is hard to implement, a firm may consider partially dynamic strate-

gies, in which either the pricing or contracting policy (but not both) is dynamic. In this section, we

compare four different strategies: (i) fully-dynamic (i.e., dynamic contracting and dynamic pricing),

(ii) dynamic-pricing-only (i.e., static contracting and dynamic pricing), (iii) dynamic-contracting-

only (i.e., dynamic contracting and static pricing), and (iv) fully-static (i.e., static contracting and
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Figure 7 The firm’s expected profit with respect to initial inventory level under different contracting and pricing

strategies. Parameter values: r= 0.025, η= 8, I0 = 10, σ= 2, α= 15, β = 1, and π= 2.

static pricing). As discussed in the previous section, the dynamic-pricing-only strategy has been

used in the airline industry, in which dynamic pricing—in the absence of dynamic contracting—is

the norm. Our comparison across strategies in this section sheds light on how the performance of

different strategies depends on the operating environment.

We denote by V fd
p , V dp

p , V dc
p , and V fs

p the firm’s expected profit under the fully-dynamic, dynamic-

pricing-only, dynamic-contracting-only, and fully-static strategies, respectively. Note that the firm’s

value function under a fully-dynamic strategy, V fd
p , is the same as the firm’s value function in (17)

in Section 4. More specifically, the value functions are given as follows:

V fd
p = sup

{pt}t∈[0,T ],{Zt}t∈[0,T ]

E

[∫ T

0

e−rt
(
ptηβ

2Zt +αpt−αp2
t − ηβ2Z2

t /2
)
dt−πe−rT (DT − I0)

+

]
(20)

V dp
p = sup

{pt}t∈[0,T ],b0

E

[∫ T

0

e−rt
(
ptηβ

2b0 +αpt−αp2
t − ηβ2b2

0dt
)
−πe−rT (DT − I0)

+

]
(21)

V dc
p = sup

p,{Zt}t∈[0,T ]

E

[∫ T

0

e−rt
(
pηβ2Zt +αp−αp2− ηβ2Z2

t /2dt
)
−πe−rT (DT − I0)

+

]
(22)

V fs
p =sup

p,b0

E

[∫ T

0

e−rt
(
pηβ2b0 +αp−αp2− ηβ2b2

0dt
)
−πe−rT (DT − I0)

+

]
. (23)

More details about how we obtained (20)–(23) can be found in the proof of Proposition 8 in the

appendix. Clearly, the fully dynamic strategy dominates the others; that is, V fd
p ≥ V dp

p , V fd
p ≥ V dc

p ,

and also naturally V dp
p ≥ V fs

p and V dc
p ≥ V fs

p . Note when the firm searches over all admissible fully

dynamic strategies, it also considers all admissible partially and fully static strategies. Comparing

V dp
p and V dc

p , on the other hand, is not straightforward and depends on the interaction of pricing

and effort parameters.
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The following proposition illustrates the effectiveness of the dynamic contract, which allows the

firm to adjust the sales incentive in response to the realized demand and the remaining inventory.

For example, when the current cumulative demand level Dt is high, the firm might reduce the

incentive (or bonus) for the sales agent to avoid overbooking to match the initial inventory. Com-

pared with the case of a static contract, using a dynamic contract incurs a lower instantaneous

cost of incentivizing the agent. More specifically, we compare the value functions V fd
p (under the

fully-dynamic strategy) in (20) and V dp
p (under the dynamic-pricing-only strategy) in (21). For

each unit of bonus provided, the instantaneous incentive cost of the dynamic contract ηβ2/2 is half

of the static contract’s cost ηβ2.

Proposition 8. In view of (20) to (23), the static contract (i.e., Γ = a0 +
∫ T

0
e−r(t−T )b0dDt)

induces an instantaneous incentive cost of ηβ2b2
0 to the principal, whereas the dynamic contract

defined in (4) induces an instantaneous incentive cost of ηβ2Z2
t /2.

In our ensuing numerical study, we derive our baseline parameter values using simulated data

from the airline industry. We calibrate the parameters for the airline industry based on Perera

and Tan (2019) using the following procedure. We first define the parameter space for our model.

For each pair of parameters, we derive the optimal dynamic-pricing-only policy using the tree-grid

method (Kossaczkỳ, Ehrhardt, and Günther 2019). Then, for each pair of parameters, we simulate

the demand data based on our Brownian motion driven demand process model in (11). Finally, we

compare and choose the parameters that give the smallest distance between the simulated demand

data based on Perera and Tan (2019) and the demand data based on our model.7

Next, we compare the four strategies—as defined in (20) to (23)—under various overbooking

penalty parameters and illustrate the results in Figure 8. Note from the figure that the profit

difference between the fully dynamic strategy and the dynamic-pricing-only strategy is around

1%. In other words, under the parameters drawn from the airline industry, a firm can achieve

approximately 99% of the maximum expected profit by practicing a dynamic-pricing-only strategy,

and thus, offering a static incentive scheme to sales agents.8 In addition, under the estimated

parameters, the dynamic-pricing-only strategy dominates the dynamic-contracting-only strategy.

The reason is that under the estimated parameters, the effect of pricing on demand is greater than

that of the sales incentives. As such, dynamic pricing is more effective than dynamic contracting.

7 The estimated benchmark parameter values are r = 0.025, η = 10, I0 = 150, σ = 13, α= 354, ηβ2 = 10, and π = 2.
Because ηβ2 represents the effort effect on the demand, without loss of generality, we let β = 1 and η= 10. Note the
estimated model parameters satisfy Assumption 1. In addition to these benchmark parameter values, we have also
tested cases where α is not far greater than β, and show that our main results extend qualitatively to a wide range
of parameter values.

8 The optimality gap is around 13% in Figure 7a, because demand is more sensitive to pricing in that scenario.
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More specifically, the dynamic-pricing-only strategy is more effective in smoothing the uncertain

demand and avoiding overbooking. Our results indicate the dynamic-pricing-only strategy performs

nearly as well as the fully dynamic strategy, consistent with the prevailing practice in the airline

industry, which places heavy emphasis on dynamic pricing but largely relies on static incentive

schemes for sales agents (see, e.g., Alamdari 2002, Elmaghraby and Keskinocak 2003).
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Figure 8 The firm’s expected profit versus overbooking penalty parameter π. The parameter values, as calibrated

from Perera and Tan (2019), are r= 0.025, η= 10, I0 = 150, σ= 13, α= 354, and β = 1.

Next, Figures 9 to 11 illustrate how different combinations of model parameters influence the

firm’s expected profits from different strategies.

A salient feature of our model is limited inventory. Thus, investigating the effect of limited

inventory on the performance of various strategies is of interest. Figure 9 shows that as the inventory

constraint becomes tighter (i.e., as I0 is decreases), the performance differences between various

strategies widen. One factor accounting for the performance difference is that, all else being equal, a

lower initial inventory leads to a higher probability of overbooking. For this reason, the firm faces a

tradeoff between boosting demand and avoiding overbooking penalty term πe−rT (DT − I0)
+

. Thus,

a dynamic strategy helps achieve substantially better performance than a static one. Because the

price effect on demand is greater than the effort effect, the dynamic-pricing-only strategy performs

better than the dynamic-contracting-only strategy under the estimated parameters for the airline

industry.

Another salient feature of our model is demand uncertainty, which is closely relevant to moral

hazard: in the absence of demand uncertainty, the firm can establish a one-to-one correspon-

dence between outcome and effort, so moral hazard does not arise. Figure 10 illustrates how
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Figure 9 The firm’s expected profit percentile versus the initial inventory level (I0). All the parameter values are

the same as in Figure 8 except that we vary I0 between 50 and 180.
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Figure 10 The firm’s expected profit percentile versus demand volatility (σ). All parameter values are the same

as in Figure 8 except that we vary σ between 10 and 30.

demand volatility influences different strategies. As demand volatility rises, the performance differ-

ences between the fully dynamic strategy, the two partially dynamic strategies (esp. the dynamic-

contracting-only strategy), and the fully static strategy widen. In addition, Figure 10 shows that

when demand is sufficiently volatile, the dynamic-pricing-only strategy dominates the dynamic-

contracting-only strategy. The reason is that when the price-effect parameter α is relatively high

(as in the case of the airline industry), dynamic pricing is more effective in smoothing the demand

process than dynamic contracting.

Next, as Section 4 suggests, the relative magnitude of the price and effort effects plays an

instrumental role in influencing the performance differences across strategies. Figure 11 shows that



Zuo, Dai, and Keppo: Incentive Design and Pricing under Limited Inventory 23

50 100 150 200 250 300 350 400
Price effect parameter

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Pr
in
cip

al
's 

ex
pe

ct
ed

 p
ro
fit
 p
er
ce

nt
ile

fully-dynamic
dynamic-pricing-only
dynamic-contracting-only
fully-static

Figure 11 The firm’s expected profit percentile versus price-effect parameter (α). All parameter values are the

same as in Figure 8 except that we vary α between 50 and 400. In particular, the initial inventory

level I0 = 150.
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(a) I0 = 50
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(b) I0 = 200

Figure 12 The firm’s expected profit percentile versus price-effect parameter (α) under different initial inventory

levels. Both of the above panels use the same parameter values as in Figure 11 except that we use

different values of I0.

when the price effect α is low, dynamic contracting with static pricing dominates the strategy

of static contracting with dynamic pricing; that is, V dc
p ≥ V dp

p . Note that when the price-effect

parameter is low, pricing has little effect on demand. As a result, the firm prefers to influence

demand over the planning horizon through dynamic incentive design.

Furthermore, Figure 12 provides the impact of the price-effect parameter (α) on the comparison

of the strategies under different initial inventory levels (I0). By comparing the crossing points at

which the dynamic-pricing-only and dynamic-contracting-only strategies achieve the same perfor-

mance in Figure 11 (in which I0 = 150) and the left panel of Figure 12 (in which I0 = 50), we
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observe that under a low initial inventory level, the dynamic-pricing-only strategy outperforms the

dynamic-contracting-only strategy within a wider range of price-effect parameters. Likewise, by

comparing the crossing points in Figure 11 (in which I0 = 150) and the right panel of Figure 12

(in which I0 = 200), we observe that under a high inventory level, the dynamic-contracting-only

strategy tends to be more effective than the dynamic-pricing-only strategy.

One may wonder whether pricing and contracting strategies are substitutes or complements. We

observe from Figures 11 and 12 that the pricing and contracting strategies are mostly substitutes,

because in most cases either the dynamic-pricing-only or the dynamic-contracting-only strategy

helps the firm achieve most of the benefits of the fully dynamic strategy. Note that the pricing

strategy follows from revenue management, where, for example, a price increase will increase rev-

enue if demand is inelastic. On the other hand, a higher incentive for the sales agent incurs costs,

but it may increase sales at a high price.

Finally, we conduct convergence analysis to shed light on the relative performance of the dynamic-

pricing-only and dynamic-contracting-only strategies. The following corollary provides the com-

parison as several basic parameters approach zero or infinity.

Proposition 9. (i) As the demand sensitivity in terms of effort, denoted by β, approaches

zero or infinity, the dynamic-pricing-only strategy outperforms the dynamic-contracting-only strat-

egy.

(ii) As the demand sensitivity in terms of pricing, denoted by α, approaches zero or infinity, the

dynamic-contracting-only strategy outperforms the dynamic-pricing-only strategy.

(iii) As the initial inventory I0 approaches infinity, the dynamic-contracting-only and dynamic-

pricing-only strategies become equivalent to each other.

(iv) As the volatility σ approaches zero or infinity, the dynamic-contracting-only and dynamic-

pricing-only strategies become equivalent to each other.

6. Analysis of Price Segmentation

We have introduced a general modeling framework that can be built upon to incorporate various

realistic features. Motivated by the airline industry (see, e.g., Feng and Xiao 2001), in this section,

we incorporate the use of price segments that are released gradually and consecutively, and generally

the price segments released as time approaches are more expensive.

6.1. Fixed Switching Point

We start by considering the case in which the switching point between the two price levels (i.e., p1

and p2) is exogenous. Without loss of generality, we consider the case in which the switching point

is in the middle of the planning horizon, such that the selling price is p1 for the first part of the
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planning horizon and p2 for the rest. The cumulative demand quantity follows (11). Further, as in

(11), the term α(1− pt) in the drift term captures the price effect for both the firm’s own sales

channel and the agent. As in Section 4, the agent’s optimal effort is given by (13).

However, now the firm’s value function is given by

V p = sup
{p1,p2}{zt}t∈[0,T ]

E

[∫ T/2

0

p1e
−rtdDt +

∫ T

T/2

p2e
−rtdDt− e−rT ξT −πe−rT (DT − I0)+

]
. (24)

Then, for fixed (p1, p2), we have the following HJB equation:

sup
Zt

{(
ptηβ

2Zt +αpt−αp2
t − ηβ2Z2

t /2
)
− rV p

t +
∂V p

t

∂t
+
∂V p

t

∂D
(ηβ2Zt +α−αpt) +

1

2

∂2V p
t

∂D2
σ2

}
= 0,

(25)

where pt = p1 if t≤ T/2 and pt = p2 if t≥ T/2. This gives the firm’s optimal incentive variable Zt,

which solves

arg sup
Zt

{(
ptηβ

2Zt− ηβ2Z2
t /2
)

+
∂V p

t

∂D
ηβ2Zt

}
for all t∈ [0, T ]. (26)

Then, we can search for the pair of (p1, p2) that maximizes the firm’s value.

Here, we present numerical results for the price-segment problem with dynamic contracting.

In Figure 13, we fix the first price segment and compute the principal’s value with respect to

different second price segments. The first price in the green line is optimal under these parameters.

We observe that the optimal second price is lower than the optimal first price in the green line.

However, the opposite is true for the blue line, which is dominated by the pricing strategy in the

green line. The relationship between the two price segments is not straightforward: In the first

segment, the principal aims to generate more revenue by setting a higher price. Simultaneously, a

higher dynamic incentive is provided, which is more efficient in boosting demand. In the second

segment, the principal aims to slow down the increase in demand and avoid overbooking by setting

a low incentive and low price.

Next, let us consider the price-segment problem with static contracting, that is, Γ = a0 +∫ T
0
e−r(t−T )b0dDt. The firm’s value function is given by

V p = sup
{p1,p2,Γ}

E

[∫ T/2

0

p1e
−rtdDt +

∫ T

T/2

p2e
−rtdDt− e−rTΓ−πe−rT (DT − I0)+

]

= sup
p1,p2,b0

E

[∫ T/2

0

e−rt
(
p1ηβ

2b0 +αp1−αp2
1− ηβ2b2

0

)
dt

+

∫ T

T/2

e−rt
(
p2ηβ

2b0 +αp2−αp2
2− ηβ2b2

0

)
dt−πe−rT (DT − I0)

+

]
. (27)

We can analytically solve for the optimal p1, p2, and b0, and we find p1 ≤ p2. Without discounting

(r = 0), p1 and p2 are interchangeable in the objective function, and we have p1 = p2. Otherwise,

the following lemma shows the optimal first price is weakly lower than the second price.
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Figure 13 The firm’s expected profit versus the second price segment. The parameter values are: r = 0.025,

η= 4, I0 = 10, σ= 2, α= 15, and β = 1.

Lemma 2. Under static contracting and when the switching point is T/2, the optimal first seg-

ment price p∗1 is no higher than the second segment price p2, that is, p∗1 ≤ p∗2. The equality is achieved

when the discount rate r is zero.

The lemma below addresses the effect of demand volatility.

Lemma 3. Under static contracting and when the switching point is T/2, the optimal first seg-

ment price p∗1 and the optimal second segment price p∗2 both rise in demand volatility σ.

Figure 14 shows that both the first segment and the second segment prices increase in the demand

volatility σ.

6.2. Varying Switching Points

We continue with the static contracting and examine the effect of varying switching points for the

price segments. For any switching point t′ ∈ [0, T ], now the firm’s value function is given by

V p = sup
p1,p2,b0

E

[∫ t′

0

e−rt
(
p1ηβ

2b0 +αp1−αp2
1− ηβ2b2

0

)
dt

+

∫ T

t′
e−rt

(
p2ηβ

2b0 +αp2−αp2
2− ηβ2b2

0

)
dt−πe−rT (DT − I0)

+

]
= sup
p1,p2,b0

(1− e−rt
′
)(p1ηβ

2b0 +αp1−αp2
1− ηβ2b2

0) + (e−rt
′
− e−rT )(p2ηβ

2b0 +αp2−αp2
2− ηβ2b2

0)

−πe−rT
∫ ∞
M̄/(σ

√
T )

(σ
√
Tx− M̄)e−x

2/2/
√

2πdx,

where M̄ = I0− (α(1− p1)t′+α(1− p2)(T − t′))−β2ηb0T .
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Figure 14 Segment prices versus demand volatility. Parameter values: r = 0.1, η = 4, I0 = 10, α = 15, b0 = 0.1

and β = 1.

The following lemma describes how the optimal segment prices (p1, p2) vary against different

levels of demand volatility.

Lemma 4. For any switching point t′, the optimal first segment price p∗1 and the optimal second

segment price p∗2 rise in demand volatility σ. If the discount rate r is zero then the optimal segment

prices are the same, that is, p∗1 = p∗2.

Lemma 4 suggests that when a firm faces increased demand volatility, it tends to increase its

selling prices. As σ increases, the firm faces a choice between attracting more demand by lowering

prices or increasing marginal revenue by raising prices, and at the same, lowering the risk of

overbooking penalty. However, under higher σ, even if the firm stimulates demand by lowering

prices, this demand could later be offset due to high demand volatility. Therefore, using price

to stimulate demand is less effective under high demand volatility than under low volatility. The

second part of Lemma 4 indicates that it is optimal to use a single price segment when there is

no discounting. The reason is that the optimal pricing strategy is determined by maximizing the

same instantaneous function, leading to the same maximizer.

Next, motivated by the practice of the airline industry (see, e.g., Feng and Xiao 2001), we analyze

the price segment policy determined by the inventory rather than the deterministic switching point

as in the previous subsection.

The firm uses p1 for the first I1 customers, where I1 ≤ I0. Let τ = inf{t ∈ [0, T ] :Dt ≥ I1}. For

t > τ , the firm sets the price pt = p2 for the remaining inventory I0− I1. The firm’s problem is to

decide the optimal prices p1 and p2, and the first segment inventory I1. The firm’s value function

is given by

V p = sup
p1,p2,I1,b0

E

[∫ τ

0

e−rtp1dDt +

∫ T

τ

e−rtp2dDt− e−rTΓ−πe−rT (DT − I0)
+

]
. (28)
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As in Section 3, we normalize the agent’s participation level ρa to zero.

Proposition 10. Under the price segment policy, the firm’s expected profit is lower than under

the dynamic pricing strategy.

We numerically present the pricing policy under the airline parameter values in Section 5. Fig-

ure 15(a) shows the dynamic-pricing-only strategy outperforms the price segment policy (under

static contracts). On average, the difference between the profits of these strategies is about 10%.

This differences falls in the initial inventory level I0. Figure 15(b) shows the optimal second seg-

ment price is lower than that for the first segment. First the firm aims to boost the demand with

low price p1. Once the sales are secured at some level, the firm slows down the demand process and

rises the marginal profit with high price p2. As the inventory level rises, the two segment prices

converge. With high inventory level I0, there is no overbooking penalty, and therefore, the price

difference is due to the discounting. Since the discount rate is small in the airline case, the optimal

segment prices are almost the same with high initial inventory levels.
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(a) The firm’s expected profit percentile versus initial
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Figure 15 The firm’s expected profit percentile and the optimal segment prices versus the initial inventory level

(I0). All the parameter values are the same as in Figure 8 except that we vary I0 between 50 and

180.

7. Concluding Remarks

How to extract value from limited and perishable inventory is a prominent research area in the

fields of operations management and marketing. Yet, the two fields have taken drastically different

approaches: in the operations management (esp. dynamic pricing) literature, motivated by the

problem of selling airline tickets and hotel rooms, the emphasis has been on dynamic pricing without
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considering agency issues; in the marketing (esp. salesforce compensation) literature, by contrast,

the emphasis has been on managing agency issues under an exogenous price. Methodologically, the

operations management literature rarely models unobservable actions undertaken by sales agents,

whereas the marketing literature focuses on single-period models in which all consumers arrive

simultaneously.

We bridge the two fields by investigating incentive design and pricing jointly using a continuous-

time principal-agent model with inventory and pricing considerations. We show that under dynamic

pricing, a static incentive scheme helps the firm reap nearly all the benefits of the optimal dynamic

incentive scheme when inventory levels are low and the demand is elastic. This finding is consistent

with the observation that airlines employ dynamic pricing but rarely offer agents dynamic contracts.

By contrast, using a static pricing and incentive structure results in a significant loss of efficiency.

Our additional analysis demonstrates the value of managing sales incentives and pricing jointly.

We demonstrate that, outside of the airline industry, the value of incentive design can outweigh

the value of dynamic pricing in industries where personalized selling strategies generate more sales.

Static sales incentives, particularly when the firm lacks pricing flexibility, can result in a significant

loss of efficiency.

Implementing a fully dynamic strategy may prove difficult in practice. For this reason, we com-

pare two partially dynamic strategies in which the firm engages in either dynamic pricing or

dynamic contracting but not both. Among other findings, we show that when inventory levels are

high, the dynamic-contracting-only strategy outperforms the dynamic-pricing-only strategy; how-

ever, when inventory levels are low, the dynamic-pricing-only strategy outperforms the dynamic-

contracting-only strategy across a broader range of parameters. In addition to these partially

dynamic strategies, we analyze a case in which the firm operates on price segments and use our

analytical framework to gain insight into the firm’s choice of price level and length of each segment.
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Appendices to “Incentive Design and Pricing under Limited Supply”

A: Technical Proofs

In preparation for the proof of Lemma 1, we justify the specific form of the agent contract in (4). Let us

first only consider incentive design under constant price as in Section 3. Let us consider the process of the

agent’s value function V a
t that is Markov and smooth with V a

t ∈ C1,2([0, T ]×R) in the sense of functional

differentiation in Dupire (2009). Then, we have

dV a
t = ∂tV

a
t dt+ZtdDt + 1

2
∂DDV

a
t d〈D〉t, (29)

where, by Itô’s formula, the process Zt = ∂DV
a
t (t,Dt), and ∂D and ∂DD are the first and second partial

derivatives with respect to the demand process D. Thus, Zt represents the sensitivity of the agent’s value

function with respect to the demand process, and it is the key to inducing sales effort.

By the martingale optimality principle and (3), the process V a
t e
−rt−

∫ t
0
e−rsc(As)ds is a supermartingale

for all admissible control processes, and it is a martingale for the optimal admissible control process provided

that the optimizer exists. Then, by Itô’s formula, we get

d

[
V a
t e
−rt−

∫ t

0

e−rsc(As)ds

]
=−re−rtV a

t dt+ e−rtdV a
t − e−rtc(At)dt

=−re−rtV a
t dt+ e−rt

[
∂tV

a
t dt+ZtdDt + 1

2
∂DDV

a
t d〈D〉t

]
− e−rtc(At)dt

= e−rt
[
−rV a

t + ∂tV
a
t + 1

2
∂DDV

a
t σ

2 +Zt · (At + a)− c(At)
]
dt+ZtσdBt.

Using the fact that the drift term of a martingale vanishes, we get the following path-dependent Hamilton-

Jacobi-Bellman (HJB) equation:

0 = −rV a
t + ∂tV

a
t + 1

2
∂DDV

a
t σ

2 +Ha(Zt), (30)

where we introduced the Hamiltonian function for the agent’s problem:

Ha(z) ≡ max
A∈R

ha(z,A) =
ηz2

2
+ za, (31)

where ha(z,A) = z · (A+a)− c(A) for all z ∈R and c(A) = A2

2η
. The maximum is attained at Â(z) = ηz. Note

V a in (2) is the agent’s value function at t= 0. That is, V a = V a
0 , where the value function of the agent, V a

t ,

is the solution of HJB equation (30) and the optimal effort of the agent is given by Â(Zt) = ηZt.

Substituting (30) into (29) gives

dV a
t = ∂tV

a
t dt+ZtdDt + 1

2
∂DDV

a
t d〈D〉t

= [rV a
t −Ha(Zt)]dt+ZtdDt. (32)

By the definition of V a
t in (3) and the direct integration of (32), we get

ξT = V a
T =M0 +

∫ T

0

(ZtdDt + [rV a
t −Ha(Zt)]dt) , (33)

where M0 = V a
0 . The form of contract in (33) is the same as the agent’s contract in (4). The constant term Y0

in (4) is equivalent to M0 in (33). The process Yt in (4) delivers the agent’s continuation utility Vt. In other
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words, the process Y keeps track of the agent’s future utility, which is often referred to as the “promised

utility” in the literature (see, e.g., Ljungqvist and Sargent 2004).

Proof of Proposition 1. By (4), we get

de−rtYt =−re−rtYtdt+ e−rtZtdDt− e−rtHa(Zt)dt+ e−rtrYtdt

= e−rtZtdDt− e−rtHa(Zt)dt. (34)

From this and equations (3) and (4), the agent’s problem can be written as:

V a = sup
{At}

E

[
Y0 +

∫ T

0

e−rtZtdDt− e−rtHa(Zt)dt−
∫ T

0

e−rtc(At)dt

]
= sup
{At}

E

[
Y0 +

∫ T

0

e−rt (ha(At,Zt)−Ha(Zt))dt

]
≤ Y0, (35)

where ha(Zt,At) = Zt · (At + a)− c(At) and the expectation is taken under the demand dynamics (1). The

equality in (35) is obtained when At = Ât for the optimizer of the agent’s Hamiltonian function. For all

t∈ [0, T ], by (34), we have

V a
t = sup

{As}s∈[t,T )

E

[
e−r(T−t)YT −

∫ T

t

e−r(s−t)c(As)ds|Dt

]
= sup
{As}s∈[t,T )

E

[
Yt +

∫ T

t

e−r(s−t)ZsdDs− e−r(s−t)Ha(Zs)dt−
∫ T

t

e−r(s−t)c(As)ds|Dt

]
= sup
{At}s∈[t,T )

E

[
Yt +

∫ T

t

e−r(s−t) (ha(As,Zs)−Ha(Zs))ds|Dt

]
≤ Yt. (36)

Therefore, for any t ∈ [0, T ], V a
t ≤ Yt and equality is achieved when the agent’s effort is At = Ât, i.e., it

optimizes (5). Q.E.D.

Proof of Theorem 1. The proof follows from the arguments that precede Theorem 1. Q.E.D.

Proof of Lemma 1. Following (36) and the optimal agent’s effort in Proposition 1, we have V a
t = Yt. By

the process of Y in (4), the agent’s continuation utility V a
t evolves according to

dV a
t = [rV a

t −Ha(Zt)]dt+ZtdDt,

which completes the proof. Q.E.D.

Proof of Proposition 2. For any process {Zs}s∈[t,T ] and overbooking parameter π > 1, by (4) and (7), we

denote, the principal’s value function under a given incentive process, Z, and overbooking-penalty parameter,

π, is

Up
t ({Zs}s∈[t,T ], c) =Et

[∫ T

t

e−r(s−t)
(
ηZs− ηZ2

s /2
)
ds− (1 + c)e−r(T−t) (DT − I0)

+

]
, (37)

where the expectation is taken under the demand dynamics (1) with the agent’s optimal effort Ât(Zt). We

denote c := π − 1 and c > 0. Then, for any c ≥ c′, let {Z∗cs }s∈[t,T ] be the optimizer for the firm’s expected
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profit function with parameter c, V̂ p
t (c) = sup{Zs}s∈[t,T ]

Up
t ({Zs}s∈[t,T ], c) and {Z∗c′s }s∈[t,T ] be the optimizer

for V̂ p
t (c′) = sup{Zs}s∈[t,T ]

Up
t ({Zs}s∈[t,T ], c

′). Next, we have the following:

V̂ p
t (c) =Up

t ({Z∗cs }s∈[t,T ], c) =Et

[∫ T

t

e−r(s−t)
(
ηZ∗cs − ηZ∗c2s /2

)
ds− (1 + c)e−r(T−t) (DT − I0)

+

]
≤Up

t ({Z∗cs }s∈[t,T ], c
′) =Et

[∫ T

t

e−r(s−t)
(
ηZ∗cs − ηZ∗c2s /2

)
ds− (1 + c′)e−r(T−t) (DT − I0)

+

]
≤Up

t ({Z∗c′s }s∈[t,T ], c
′) =Et

[∫ T

t

e−r(s−t)
(
ηZ∗c

′

s − ηZ∗c
′2

s /2
)
ds− (1 + c′)e−r(T−t) (DT − I0)

+

]
= V̂ p

t (c′) = sup
{Zs}s∈[t,T ]

Up
t ((Zs)s∈[t,T ], c

′)

for any c≥ c′. Let us denote V p
t (π) := V̂ p

t (c) for all π and π= 1+ c. Therefore, it is straightforward to obtain

that for any π≥ π′, we have V p
t (π)≤ V p

t (π′).

The proof of part (ii) of the proposition follows an approach similar to that of part (i) and is omitted for

brevity. Q.E.D.

Proof of Proposition 3. To avoid abuse of notation, we denote Ds,d,z
t as the demand quantity at time

t with the initial demand d, starting from time s controlled by the incentive process z. By (37), the firm’s

expected profit function at time t is given by

V p
t (d) = sup

z={Zs}s∈[t,T ]

Et

[∫ T

t

e−r(s−t)
(
ηZs− ηZ2

s /2
)
ds−πe−r(T−t)

(
Dt,d,z
T − I0

)+ |d] .
For any λ ∈ [0,1] and initial demand quantities d1 and d2 at time t, and any incentive processes z1 =

{Z1,s}s∈[t,T ] and z2 = {Z2,s}s∈[t,T ], we have

V p
t (λd1 + (1−λ)d2)≥Et

[∫ T

t

e−r(s−t)
(
η [λZ1,s + (1−λ)Z2,s]− η [λZ1,s + (1−λ)Z2,s]

2
/2
)
ds

−πe−r(T−t)
(
D
t,λd1+(1−λ)d2,λz1+(1−λ)z2
T − I0

)+
|d= λd1 + (1−λ)d2

]
≥ λEt

[∫ T

t

e−r(s−t)
(
ηZ1,s− ηZ2

1,s/2
)
ds+ (1−λ)

∫ T

t

e−r(s−t)
(
ηZ2,s− ηZ2

2,s/2
)
ds

]
−Et

[
πe−r(T−t)

(
D
t,λd1+(1−λ)d2,λz1+(1−λ)z2
T − I0

)+
|d= λd1 + (1−λ)d2

]
≥ λEt

[∫ T

t

e−r(s−t)
(
ηZ1,s− ηZ2

1,s/2
)
ds+ (1−λ)

∫ T

t

e−r(s−t)
(
ηZ2,s− ηZ2

2,s/2
)
ds

]
−λEt

[
πe−r(T−t)

(
Dt,d1,z1
T − I0

)+ |d= d1

]
− (1−λ)Et

[
πe−r(T−t)

(
Dt,d2,z2
T − I0

)+ |d= d2

]
≥ λEt

[∫ T

t

e−r(s−t)
(
ηZ1,s− ηZ2

1,s/2
)
ds−πe−r(T−t)

(
Dt,d1,z1
T − I0

)+ |d= d1

]
+ (1−λ)Et

[∫ T

t

e−r(s−t)
(
ηZ2,s− ηZ2

2,s/2
)
ds−πe−r(T−t)

(
Dt,d2,z2
T − I0

)+ |d= d2

]
. (38)

Maximizing the right-hand side over the incentive process z1 and z2, the above inequality in (38) can be

rewritten as

V p
t (λd1 + (1−λ)d2)≥ λV p

t (d1) + (1−λ)V p
t (d2). (39)

The concavity is obtained by (39). Q.E.D.
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Proof of Proposition 4. First, the HJB equation in (10) gives the optimal incentive variable Z∗t by

sup
Zt

(
ηZt− ηZ2

t /2
)

+
∂V p

t

∂D
ηZt.

Then, by the first-order condition, we obtain Z∗t = 1 + ∂V p
t /∂Dt. Next, by taking the first order derivative

with respect to Dt, we get

∂Z∗t /∂Dt = ∂2V p
t /∂D

2
t . (40)

By Proposition 3 and (40), the concavity of V p
t gives ∂Z∗t /∂Dt ≤ 0. Therefore, the optimal incentive Z∗t is

decreasing in Dt.

Then, by substituting Z∗t = 1 + ∂V p
t /∂Dt into (10), we obtain

0 = η

(
1 +

∂V p

∂D

)2

/2− rV p +
∂V p

∂t
+

1

2

∂2V p

∂D2
σ2. (41)

Next, we take the first order derivative with respect to the demand quantity D for equation (41), which

yields

0 = η

(
1 +

∂V p

∂D

)
∂2V p

∂D2
− r ∂V

p

∂D
+
∂2V p

∂t∂D
+

1

2

∂3V p

∂D3
σ2. (42)

Let J = ∂V p

∂D
, the above equation can be written as

0 = η (1 + J)
∂J

∂D
− rJ +

∂J

∂t
+

1

2

∂2J

∂D2
σ2. (43)

Next, we define c, π− 1 and denote J(c) := J(π) for any c. We take the first order derivative with respect

to the parameter c for the equation (43), which gives:

0 = η
∂J

∂c

∂J

∂D
+ η (1 + J)

∂2J

∂D∂c
− r ∂J

∂c
+
∂2J

∂t∂c
+

1

2

∂3J

∂D2∂c
σ2. (44)

Then, by the Ito formula, we have

d

(
∂J

∂c

)
=
∂2J

∂c∂t
dt+

∂2J

∂c∂D
dD+

1

2

∂3J

∂c∂D2
d〈D〉

=
∂2J

∂c∂t
dt+

∂2J

∂c∂D
[ηZ∗t dt+σdBt] +

1

2

∂3J

∂c∂D2
σ2dt

=
∂2J

∂c∂t
dt+

∂2J

∂c∂D
[η(1 + J)dt+σdBt] +

1

2

∂3J

∂c∂D2
σ2dt

=

[
∂2J

∂c∂t
+

∂2J

∂c∂D
η(1 + J) +

1

2

∂3J

∂c∂D2
σ2

]
dt+

∂2J

∂c∂D
σdBt

=
∂J

∂c

[
r− η ∂J

∂D

]
dt+

∂2J

∂c∂D
σdBt. (45)

The last equality is obtained by substituting (44) into the above drift term. Next, by taking the expectations

on both sides, we obtain

E

[
∂J

∂c
(t,Dt)

]
=
∂J

∂c
(t− dt,Dt−dt) +

∂J

∂c
(t− dt,Dt−dt)

[
r− η ∂J

∂D
(t− dt,Dt−dt)

]
dt, (46)

where dt is an infinitesimal time interval. Because V p is concave, we have r − η ∂J
∂D

= r − η ∂2V p

∂D2 ≥ 0. Fur-

thermore, note V p
T = −(1 + c)(DT − I0)+ and J = ∂V p

∂D
, ∂J
∂c

(T,DT ) is non-positive when it exists. By (46),

E
[
∂J
∂c

(T,DT )
]

= ∂J
∂c

(T − dt,DT−dt) + ∂J
∂c

(T − dt,DT−dt)
[
r− η ∂J

∂D
(T − dt,DT−dt)

]
dt. Because ∂J

∂c
(T,DT ) ≤ 0
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and r−η ∂J
∂D
≥ 0, we must have ∂J

∂c
(T −dt,DT−dt)≤ 0. Then, by (46) and induction , we can have ∂J

∂c
(t,Dt)≤ 0,

and therefore,
∂Z∗t
∂c

= ∂2V p

∂D∂c
= ∂J

∂c
≤ 0. Thus, the optimal incentive Z∗t falls in the parameter c, which means

that Z∗t also falls in the overbooking penalty parameter π. Q.E.D.

Proof of Theorem 2. The proof follows from the arguments that precede Theorem 2. Q.E.D.

Proof of Proposition 5. For any processes {Zs}s∈[t,T ], {ps}s∈[t,T ] and overbooking parameter π, by (16),

we define

Up
t ({Zs}s∈[t,T ],{ps}s∈[t,T ], π)

=Et

[∫ T

t

e−r(s−t)
(
psηβ

2Zs +αps−αp2s − ηβ2Z2
s /2
)
ds−πe−r(T−t) (DT − I0)

+

]
,

where the expectation is taken under the dynamics (11) with the agent’s optimal effort Ât(Zt) in (13).

For any π ≥ π′, let {Z∗πs }s∈[t,T ] and {p∗πs }s∈[t,T ] be the optimizer of the firm’s expected profit function

with parameter π, V p
t (π) = sup{Zs}s∈[t,T ],{ps}s∈[t,T ]

Up
t

(
{Zs}s∈[t,T ],{ps}s∈[t,T ], π

)
. Further, let {Z∗π′s }s∈[t,T ] and

{p∗π′s }s∈[t,T ] be the optimizer of V p
t (π′) = sup{Zs}s∈[t,T ],{ps}s∈[t,T ]

Up
t

(
{Zs}s∈[t,T ],{ps}s∈[t,T ], π

′
)
.

It is straightforward to show

V p
t (π) =Up

t ({Z∗πs }s∈[t,T ],{p∗πs }s∈[t,T ], π)

=Et

[∫ T

t

e−r(s−t)
(
p∗πs ηβ

2Z∗πs +αp∗πs −αp∗π2s − ηβ2Z∗π2s /2
)
ds−πe−r(T−t) (DT − I0)

+

]
≤Up

t ({Z∗πs }s∈[t,T ],{p∗πs }s∈[t,T ], π
′)

=Et

[∫ T

t

e−r(s−t)
(
p∗πs ηβ

2Z∗πs +αp∗πs −αp∗π2s − ηβ2Z∗π2s /2
)
ds−π′e−r(T−t) (DT − I0)

+

]
≤Up

t ({Z∗π′s }s∈[t,T ], ({p∗π
′

s }s∈[t,T ], π
′)

=Et

[∫ T

t

e−r(s−t)
(
p∗π
′

s ηβ2Z∗π
′

s +αp∗π
′

s −αp∗π
′2

s − ηβ2Z∗π
′2

s /2
)
ds−π′e−r(T−t) (DT − I0)

+

]
= V p

t (π′).

Therefore, we obtained that V p
t (π)≤ V p

t (π′) for any π≥ π′. Q.E.D.

Proof of Proposition 6. Because α > ηβ2 and thereby, α > ηβ2/2, it is straightforward to show that

ptηβ
2Zt +αpt−αp2t − ηβ2Zt/2 is jointly concave in (Zt, pt). To avoid abuse of notation, we denote Ds,d,z,q

t

as the demand quantity at time t with demand d at time s and with incentive and price processes z and p.

The firm’s expected profit function at time t is given by:

V p
t (d) = sup

z={Zs}s∈[t,T ],p={ps}s∈[t,T ]

Et

[∫ T

t

e−r(s−t)
(
psηβ

2Zs +αps−αp2s − ηβ2Z2
s /2
)
ds

−πe−r(T−t)
(
Dt,d,z,p
T − I0

)+ |d] .
For any λ ∈ [0,1] and initial demand quantities d1 and d2, incentive processes z1 = {Z1,s}s∈[t,T ] and z2 =

{Z2,s}s∈[t,T ], and any price processes p1 = {p1,s}s∈[t,T ] and p2 = {p2,s}s∈[t,T ], we have

V p
t (λd1 + (1−λ)d2)
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≥Et
[∫ T

t

e−r(s−t)
(

[λp1,s + (1−λ)p2,s]ηβ
2 [λZ1,s + (1−λ)Z2,s] +α [λp1,s + (1−λ)p2,s]−α [λp1,s + (1−λ)p2,s]

2

−ηβ2 [λZ1,s + (1−λ)Z2,s]
2
/2
)
ds−πe−r(T−t)

(
D
t,λd1+(1−λ)d2,λz1+(1−λ)z2,λp1+(1−λ)p2
T − I0

)+
|d= λd1 + (1−λ)d2

]
≥ λEt

[∫ T

t

e−r(s−t)
(
p1,sηβ

2Z1,s +αp1,s−αp21,s− ηβ2Z2
1,s/2

)
ds

+(1−λ)

∫ T

t

e−r(s−t)
(
p2,sηβZ2,s +αp2,s−αp22,s− ηβ2Z2

2,s/2
)
ds

]
−Et

[
πe−r(T−t)

(
D
t,λd1+(1−λ)d2,λz1+(1−λ)z2,λp1+(1−λ)p2
T − I0

)+
|d= λd1 + (1−λ)d2

]
≥ λEt

[∫ T

t

e−r(s−t)
(
p1,sηβ

2Z1,s +αp1,s−αp21,s− ηβ2Z2
1,s/2

)
ds

]
+Et

[
(1−λ)

∫ T

t

e−r(s−t)
(
p2,sηβ

2Z2,s +αp2,s−αp22,s− ηβ2Z2
2,s/2

)
ds

]
−λEt

[
πe−r(T−t)

(
Dt,d1,z1,p1
T − I0

)+ |d= d1

]
− (1−λ)Et

[
πe−r(T−t)

(
Dt,d2,z2,p2
T − I0

)+ |d= d2

]
≥ λEt

[∫ T

t

e−r(s−t)
(
p1,sηβ

2Z1,s +αp1,s−αp21,s− ηβ2Z2
1,s/2

)
ds−πe−r(T−t)

(
Dt,d1,z1,p1
T − I0

)+ |d= d1

]
+ (1−λ)Et

[∫ T

t

e−r(s−t)
(
p2,sηβ

2Z2,s +αp2,s−αp22,s− ηβ2Z2
2,s/2

)
ds−πe−r(T−t)

(
Dt,d2,z2,p2
T − I0

)+ |d= d2

]
.

(47)

Maximizing the right-hand side over the incentive process and pricing process, z1,p1, z2, and p2, the above

inequality in (47) can be rewritten as

V p
t (λd1 + (1−λ)d2)≥ λV p

t (d1) + (1−λ)V p
t (d2), (48)

which means V p
t (d) is concave in d. Q.E.D.

Proof of Proposition 7. The proof consists of two parts:

(i) The optimal incentive variable and price, that is, Z∗t and p∗t , are given by the equation in (19). Because

α> ηβ2, (ptηβ
2Zt +αpt−αp2t − ηβ2Z2

t /2)+
∂V

p
t

∂D
(ηβ2Zt−αpt) is jointly concave in (pt,Zt) and Proposition 6

gives the concavity of the principal’s value function; that is,
∂2V

p
t

∂D2 ≤ 0. Then, the first-order condition with

respect to pt and Zt gives

(ηβ2Zt +α− 2αpt)−
∂V p

t

∂D
α= 0, (pt−Zt) +

∂V p
t

∂D
= 0.

These equations give the optimal price and incentive variable p∗t =
∂V

p
t

∂D
(ηβ2−α)+α
2α−ηβ2 and Z∗t =

∂V
p
t

∂D
α+α

2α−ηβ2 .

(ii) By the optimal price and incentive variable in (i) and (66), we get:

0 =
1
2
α2
(
1 + ∂V p

∂D

)2
2α− ηβ2

− rV p +
∂V p

∂t
+

1

2

∂2V p

∂D2
σ2. (49)

Then, we take the first order derivative with respect to the demand quantity D, which gives

0 =
α2
(
1 + ∂V p

∂D

)
∂2V p

∂D2

2α− ηβ2
− rV p− r ∂V

p

∂D
+
∂2V p

∂t∂D
+

1

2

∂3V p

∂D3
σ2. (50)

Let J = ∂V p

∂D
, the equation (50) can be rewritten as

0 =
α2 (1 +J) ∂J

∂D

2α− ηβ2
− rJ +

∂J

∂t
+

1

2

∂2J

∂D2
σ2. (51)
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Next, we denote c := π− 1 and define J(c) := J(π) for any c. We take the first order derivative with respect

to the parameter c for the equation (51). The reformulated equation is as follows:

0 =
α2 ∂J

∂c
∂J
∂D

2α− ηβ2
+
α2 (1 +J) ∂2J

∂D∂c

2α− ηβ2
− r ∂J

∂c
+
∂2J

∂t∂c
+

1

2

∂3J

∂D2∂c
σ2. (52)

Then, by the Ito formula, we have

d

(
∂J

∂c

)
=
∂2J

∂c∂t
dt+

∂2J

∂c∂D
dD+

1

2

∂3J

∂c∂D2
d〈D〉

=
∂2J

∂c∂t
dt+

∂2J

∂c∂D

[(
ηβ2Z∗t +α(1− p∗t )

)
dt+σdBt

]
+

1

2

∂3J

∂c∂D2
σ2dt

=
∂2J

∂c∂t
dt+

∂2J

∂c∂D

[
(1 +J)α2

2α2− ηβ2
dt+σdBt

]
+

1

2

∂3J

∂c∂D2
σ2dt

=

[
∂2J

∂c∂t
+

∂2J

∂c∂D

(1 +J)α2

2α2− ηβ2
+

1

2

∂3J

∂c∂D2
σ2

]
dt+

∂2J

∂c∂D
σdBt

=
∂J

∂c

[
r− α2

2α2− ηβ2

∂J

∂D

]
dt+

∂2J

∂c∂D
σdBt. (53)

The last equality is obtained by substituting (52) into the above drift term. Next, by taking the integral and

expectation for both sides, we get

E

[
∂J

∂c
(t,Dt)

]
=
∂J

∂c
(t− dt,Dt−dt) +

∂J

∂c
(t− dt,Dt−dt)

[
r− α2

2α2− ηβ2

∂J

∂D
(t− dt,Dt−dt)

]
dt, (54)

where dt is an infinitesimal time interval. Because V p is concave and α2 > ηβ2, we have r −
α2

2α2−ηβ2
∂J
∂D

= r − α2

2α2−ηβ2
∂2V p

∂D2 ≥ 0. Furthermore, note V p = −(1 + c)(DT − I0)+ and J = ∂V p

∂D
,

∂J
∂c

(T,DT ) is non-positive when it exists. By (54), we have E
[
∂J
∂c

(T,DT )
]

= ∂J
∂c

(T − dt,DT−dt) + ∂J
∂c

(T −

dt,DT−dt)
[
r− α2

2α2−ηβ2
∂J
∂D

(T − dt,DT−dt)
]
dt. Because r− α2

2α2−ηβ2
∂J
∂D
≥ 0 and ∂J

∂c
(T,DT )≤ 0, we must have

∂J
∂c

(T − dt,DT−dt)≤ 0. Then, by (54) and induction, we can have ∂J
∂c

(t,Dt)≤ 0, which indicates that
∂Z∗t
∂c

=

∂2V p

∂D∂c
= ∂J

∂c
≤ 0. Because p∗t =

∂V
p
t

∂D
(ηβ2−α)+α
2α−ηβ2 = J(ηβ2−α)+α

2α−ηβ2 , α2 > ηβ2 and Z∗t =
∂V

p
t

∂D
α+α

2α−ηβ2 = Jα+α
2α−ηβ2 , we have

∂p∗t
∂c

=
∂J
∂c

(ηβ2−α)
2α−ηβ2 ≥ 0 and

∂Z∗t
∂c

=
α ∂J

∂c

2α−ηβ2 ≤ 0. As such, we obtain that the optimal incentive Z∗t falls in c and

the optimal price p∗t increases in c, which means Z∗t also falls in the overbooking penalty parameter π and

p∗t increases in π. Q.E.D.

Proof of Proposition 8. By (15), the firm’s expected profit under the fully-dynamic (V fd
p ), dynamic-

pricing-only (V dp
p ), dynamic-contracting-only (V dc

p ), and fully-static strategies (V fs
p ), respectively, are given

as follows:

V fd
p = sup

{pt}t∈[0,T ],{Zt}t∈[0,T ]

E

[∫ T

0

e−rt
(
ptηβ

2Zt +αpt−αp2t − ηβ2Z2
t /2
)
dt−πe−rT (DT − I0)

+

]
(55)

V dp
p = sup

{pt}t∈[0,T ],b0,a0≥ρa
E

[∫ T

0

e−rtptdDt− e−rT (a0 + b0

∫ T

0

e−r(t−T )dDt)−πe−rT (DT − I0)
+

]
= sup
{pt}t∈[0,T ],b0

E

[∫ T

0

e−rt
(
ptηβ

2b0 +αpt−αp2t − ηβ2b20dt
)
−πe−rT (DT − I0)

+

]
(56)

V dc
p = sup

p,ξT

E

[∫ T

0

e−rtpdDt− e−rT ξT −πe−rT (DT − I0)
+

]
= sup
p,{Zt}t∈[0,T ],Y0≥ρa

E

[∫ T

0

e−rtpdDt− e−rTY Z
T −πe−rT (DT − I0)

+

]
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= sup
p,{Zt}t∈[0,T ]

E

[∫ T

0

e−rt
(
pηβ2Zt +αp−αp2− ηβ2Z2

t /2dt
)
−πe−rT (DT − I0)

+

]
(57)

V fs
p = sup

p,b0,a0≥ρa
E

[∫ T

0

e−rtpdDt− e−rT (a0 + b0

∫ T

0

e−r(t−T )dDt)−πe−rT (DT − I0)
+

]
= sup

p,b0

E

[∫ T

0

e−rt
(
pηβ2b0 +αp−αp2− ηβ2b20dt

)
−πe−rT (DT − I0)

+

]
, (58)

where the static contract is given by Γ = a0 + b0
∫ T
0
e−r(t−T )dDt and the dynamic contract ξT is given by

(14). Here the agent’s participation level is normalized to zero (i.e., ρa = 0), and thereby, the optimal base

compensations Y0 and a0 are equal to the normalized participation level, that is, Y0 = 0 and a0 = 0.

The instantaneous incentive cost is the instantaneous promised payment to induce the desired effort.

The results are directly derived from (20) to (23). For example, to examine the difference between static

contracting and dynamic contracting, let us first compare the firm’s value functions under the dynamic-

contracting-only strategy (V dc
p ) and under the fully-static strategy (V fs

p ). Under the dynamic-contracting-only

strategy, by (15), the firm’s value function is given by:

V dc
p = sup

p,ξT

E

[∫ T

0

e−rtpdDt− e−rT ξT −πe−rT (DT − I0)
+

]
= sup
p,{Zt}t∈[0,T ],Y0≥ρa

E

[∫ T

0

e−rtpdDt− e−rTY Z
T −πe−rT (DT − I0)

+

]
= sup
p,{Zt}t∈[0,T ]

E

[∫ T

0

e−rt
(
pηβ2Zt +αp−αp2− ηβ2Z2

t /2
)
dt−πe−rT (DT − I0)

+

]
, (59)

where the agent’s participation level ρa can be normalized to zero and the optimal Y0 is just equal to the

normalized participation level, that is, Y0 = 0. The last equality is obtained by substituting the optimal

Y0 = 0, the demand dynamics in (6), and payoff process in (14) .

Under the fully-static strategy, by (15), the firm’s value function, V fs
p , is given by:

V fs
p = sup

p,b0,a0≥ρa
E

[∫ T

0

e−rtpdDt− e−rTΓ−πe−rT (DT − I0)
+

]
= sup
p,b0,a0≥ρa

E

[∫ T

0

e−rtpdDt− e−rT (a0 + b0

∫ T

0

e−r(t−T )dDt)−πe−rT (DT − I0)
+

]
= sup

p,b0

E

[∫ T

0

e−rt
(
pηβ2b0 +αp−αp2− ηβ2b20

)
dt−πe−rT (DT − I0)

+

]
. (60)

Here, the static contract is given by Γ = a0 + b0
∫ T
0
e−r(t−T )dDt. The base payment a0 and incentive bonus b0

are chosen at the initial time by the firm. The last equality is obtained by substituting the demand dynamics

in (11).

Next, through (59) and (60), we can compare the firm’s value under the dynamic contract and the static

contract. Under the static contract, the corresponding incentive parameter b0 is chosen by the firm at the

initial time t = 0. For the dynamic contract, the incentive variable Zt is adapted and dependent on the

current demand level or the remaining inventory level. Dynamic contracting provides the firm with more

flexibility to control the demand process. For example, when the current cumulative demand is very high,

the firm can provide the agent with a lower incentive, which is intended to decrease the incentive variable Zt

and to refrain from motivating the agent to generate excessive demand. Moreover, at any time t, given the
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same level of incentive (i.e., Zt = b0), we compare the term (pηβ2Zt +αp−αp2− ηβ2Z2
t /2) in ?? under the

dynamic-contracting-only strategy and (pηβ2b0 +αp−αp2− ηβ2b20) in (60) under the fully-static strategy.

The differences are ηβ2Z2
t /2 and ηβ2b20. Therefore, even under the same incentive level, the instantaneous

incentive cost for the firm under the dynamic-contracting-only strategy is lower than that under the fully-

static strategy.

Proof of Proposition 9. We provide the proof part by part:

(i) As β approaches zero or infinity, the optimal incentive Z approaches zero. Hence, the dynamic-pricing-

only strategy outperforms the dynamic-contracting-only strategy.

(ii) As α approaches zero or infinity, the optimal price p approaches zero. The problem thus simplifies to

a dynamic contracting problem under limited inventory as in Section 3.

(iii) As I0 approaches infinity, our problem converges to the first-best situation. The price and incentive

become time deterministic. The firm’s problem simplifies to a deterministic one, rendering both the dynamic-

contracting-only and dynamic-pricing-only strategies equivalent to each other.

(iv) As σ approaches zero or infinity, the optimal incentive Z approaches zero and the price p approaches

one. As σ approaches zero, our problem simplifies to a deterministic problem. Hence, both the dynamic-

contracting-only and dynamic-pricing-only strategies become equivalent to each other. Q.E.D.

Proof of Lemma 2. The firm’s value function (27) can be rewritten as:

V p = sup
p1,p2,b0

(1− e−rT/2)(p1ηβ
2b0 +αp1−αp21− ηβ2b20) + (e−rT/2− e−rT )(p2ηβ

2b0 +αp2−αp22− ηβ2b20)

−πe−rT (DT − I0)
+
,

where M̄ = I0− (α(1− p1) +α(1− p2))T/2−β2ηb0T .

By the first-order condition with respect to p1 and p2, we have:

(1− e−rT/2)(ηβ2b0 +α− 2αp1) +απe−rT (1−F (M̄/(σ
√
T )))T/2 = 0 (61)

(e−rT/2− e−rT )(ηβ2b0 +α− 2αp2) +απe−rT (1−F (M̄/(σ
√
T )))T/2 = 0 (62)

Because 1− e−rT/2 ≥ e−rT/2− e−rT and the equality is achieved when r= 0, the optimal solutions p∗1 and p∗2

that solve the above two equations must satisfy p∗1 ≤ p∗2 and the equality is obtained when r= 0. Q.E.D.

Proof of Lemma 3. By (61) and (62), we have the p2 = ηβ2b0+α
2α

− (1−e−rT/2)

2α(e−rT/2−e−rT )
(ηβ2b0 + α −

2αp1). Then we substitute p2 into (61), we have g(p1, σ) = (1 − e−rT/2)(ηβ2b0 + α − 2αp1) + απe−rT (1 −

F (M̄/(σ
√
T )))T/2 = 0.

By the Implicit Function Theorem, we have ∂p1
∂σ

= −gp1/gσ. It is easy to check that gp ≤ 0 and gσ > 0.

Thus, ∂p1
∂σ
≥ 0. We can also have ∂p2

∂σ
= 1−e−rT/2

e−rT/2−e−rT

∂p1
∂σ
≥ 0. Therefore, p∗1 and p∗2 increases in the demand

volatility σ. Q.E.D.

Proof of Lemma 4. Let us denote:

g1(p1, p2, σ) = (1− e−rt′)(ηβ2b0 +α− 2αp1) +απe−rT (1−F (M̄/(σ
√
T )))t′

g2(p1, p2, σ) = (e−rt
′ − e−rT )(ηβ2b0 +α− 2αp2) +απe−rT (1−F (M̄/(σ

√
T )))(T − t′),
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with g1(p∗1, p
∗
2, σ) = 0 and g2(p∗1, p

∗
2, σ) = 0

By the Implicit Function Theorem for a system of equations, we have∣∣∣∣ ∂g1∂p1

∂g1
∂p2

∂g2
∂p1

∂g2
∂p2

∣∣∣∣ 6= 0

and with the following two equations,( ∂g1
∂p1

∂g1
∂p2

∂g2
∂p1

∂g2
∂p2

)(
p′1(σ)
p′2(σ)

)
=−

(
∂g1
∂σ
∂g2
∂σ

)
,

we can obtain the p∗
′

1 (σ)≥ 0 and p∗
′

2 (σ)≥ 0. In other words, p∗1 and p∗2 increases in the demand volatility σ.

Next, when the time discount rate r = 0, consider a pricing strategy pt as a time deterministic function

by varying the price at each instant of time, it is always optimal to keep pt to be constant over time. Let

us denote the optimal price under the time deterministic pricing strategy as p∗. Since the segment policy

that when t′ ∈ [0, t′], pt = p1 and t∈ (t′, T ], pt = p2 is a special case as the time deterministic pricing strategy.

Therefore, the optimality under the segment policy achieves by letting p1 = p2 = p∗. Q.E.D.

B: Competition between Direct Sales Channel and Sales Channel through an Agent

In this section, we apply our analytical framework to examine the competition effect between two channels

of sales – direct sales and sales through an agent. The firm uses these two channels to sell the product, as

explored in Section 3. The cumulative demand quantity, Dt, for the product up to any given time t∈ [0, T ],

evolves according to

dDt = (a+At)dt+σdBt, (63)

where a corresponds to the firm’s demand rate through its own direct sales channel, At ≥ 0 is the agent’s

effort level, and σ is a constant diffusion term.

The agent’s optimal effort level, given the incentive variable Zt, is Ât(Zt) = ηZt. We explore how the direct

sales channel influences the agent’s effort level. Up to time T , the total sales through the direct channel

are aT . Therefore, the remaining inventory for the agent is I0− aT . As the direct sales channel a increases,

the agent has less to sell. Equivalently, we may consider transferring the problem of increasing a to that of

decreasing I0.

From the principal’s perspective, the incentive variable provided by the principal decreases with increasing

direct sales a. Consequently, the expected optimal effort of the agent decreases, and thus, the expected sales,

E(
∫ T
0
Ât(Zt)dt) (i.e.,

∫ T
0
ηZtdt), also decrease with a. We numerically show how the agent’s effort decreases

with I0. Similarly, we could conduct comparative statics numerically for a.

As the value of the other channel a increases, we observe from the numerical study presented in Figure 16

a decrease in the average incentive offered to the sales agents. At the same time, the firm’s expected profit

shows an upward trend as a increases. With a higher presence of alternative sales channels, the firm reduces

its dependence on the sales agent’s effort. This reduction in dependence, in turn, leads to a reduction in

the cost of incentives provided to motivate these agents. Consequently, as the influence of other channels a

escalates, the firm’s expected profit experiences a corresponding increase.
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Figure 16 Optimal incentives and the firm’s expected profit under different alternative sales channels a.

Parameter values : r= 0.025, η= 8, I0 = 10, σ= 2, and π= 2.

C: Comparison of the Dynamic Contract with Other Contracts

In this section, we contrast our dynamic contract with other forms of contracts. We are particularly interested

in exploring the differences in the principal’s value, the incentive variables, and the agent’s optimal effort.

First, we consider a contract of the form ξQT =B+RDT +M(DT − I0)+, where B is the base pay, R denotes

the commission rate, and M is the marginal overbook penalty with M > R. This contract only depends

on the terminal demand DT and also takes limited inventory into account. We can numerically search for

the optimal B, R, and M for this form of contract and compare the results with our dynamic contract.

Second, we examine contracts in which the firm does not compensate the agent for demand that exceeds

the capacity. At time T̂ = {t≥ 0 :Dt ≥ I0}, we set the incentive variable Zt = 0 for t ∈ T̂. This scenario can

be seen as a subset of our contract, similar to adding an additional constraint where Zt = 0 when demand

exceeds capacity.

Linear Penalty Contract. We start with considering the linear penalty contract that makes the agent

share the overbooking penalty with the principal. We consider the contract ξQT = erTB+
∫ T
0
e−r(t−T )RdDt−

M(DT − I0)+, where B is the base pay, R denotes the commission rate, and M is the marginal overbook

penalty with M >R. This contract is only dependent on the terminal demand DT and also takes the limited

inventory into account. We could numerically search for the optimal B, R, and M in this form of contract

and compare it with our dynamic contract.

Corresponding to the demand process (11) and given the contract ξQT , the agent chooses optimal effort

A= {At,0≤ t≤ T} by maximizing his expected utility:

V a = sup
{At}{0≤t≤T}

E

[
e−rT ξQT −

∫ T

0

e−rtc(At)ds

]
,

= sup
{At}{0≤t≤T}

E

[
B+

∫ T

0

e−rt (RAt− c(At))dt−Me−rT (DT − I0)+
]
, (64)

and without loss of generality, let B = 0 and a= 0 as in the main text.
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Then, we write the agent’s value function as

V a
t = sup

{As}{t≤s≤T}

E

[∫ T

t

e−r(s−t)
(
RAs−A2

s/(2η)
)
ds−Me−r(T−t)(DT − I0)+

]
, (65)

where the base pay B could be normalized to zero.

Then, we have the following HJB equation for the agent’s problem:

sup
At

{
RAt−A2

t /(2η)− rV a
t +

∂V a
t

∂t
+
∂V a

t

∂D
At +

1

2

∂2V a
t

∂D2
σ2

}
= 0, (66)

which gives the following theorem.

Theorem 3. The agent’s optimal effort At satisfies

sup
At

{
RAt− c(At) +

∂V a
t

∂D
At

}
(67)

and is given by Ât = η
(
R+

∂V a
t

∂D

)
.

Then, the firm ’s value function is given by

V p = sup
ξ
Q
T

E

[∫ T

0

e−rtdDt− e−rT ξQT −πe−rT (DT − I0)
+

]
= sup
{pt}t∈[0,T ],(R,M)

E

[∫ T

0

e−rt(1−R)
[
a+ Ât

]
dt− (π−M)e−rT (DT − I0)

+

]
, (68)

where R≤M ≤ π. The firm’s expected profit function at t∈ [0, T ] is given by

V p
t = sup

ξ
Q
T

E

[∫ T

t

e−r(s−t)dDt− e−r(T−t)ξQT −πe−r(T−t) (DT − I0)
+

]
= sup

(R,M)

E

[∫ T

t

e−r(s−t)(1−R)
[
a+ Âs

]
ds− (π−M)e−r(T−t) (DT − I0)

+

]
, (69)

where R≤M ≤ 1 and Âs is given by Theorem 3.

Theorem 4. The firm’s expected profit function in V p
t under the dynamic contract dominates the firm’s

expected profit under the linear penalty contract ξQT .

Theorem 5. The agent’s value under the linear penalty contract ξQT weakly dominates the agent’s value

under our dynamic contract ξT .

We now provide a numerical illustration of the agent’s actions under the two contracts, detailing both the

path of effort and the path of incentives under the benchmark parameters. As shown in Figure 17, the sales

agent’s effort under the linear penalty contract is lower. Given that the sales agent shares the penalty cost,

the linear penalty contract is not as effective at inducing effort. Moreover, the principal’s value under a linear

penalty contract is lower than it is under our dynamic contract. As inventory levels increase, this disparity

grows more pronounced, primarily because the linear penalty contract proves to be more costly per unit of

demand generated. On average, the value difference between the two contracts is approximately 40%.

The Case of a Hard Inventory Constraint. Next, we analyze the case with a hard inventory constraint.

We use numerical experiments to compare the gap between our model and that under a hard inventory
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(b) The firm’s expected profit versus initial
inventory level

Figure 17 Agent’s effort, and the firm’s expected profit for different initial inventory I0.

Parameter values : r= 0.025, η= 15, σ= 2, I0 = 10 and π= 2. The left side represents the comparison

between linear penalty contract and dynamic contract for I0 = 10. In this case, the optimal linear

penalty contract is given by (R,M) = (0.5,0.6).
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agent’s effectiveness

Figure 18 Incentive, agent effort, and the firm’s expected profit for different levels of salesforce effectiveness η.

Parameter values : r= 0.025, I0 = 10, σ= 2, and π= 2.

constraint. As shown in Figure 19, the firm’s expected profit under the hard inventory constraint is higher

than that under the hard inventory constraint contract. The incentive effectiveness is lower because the

firm cannot do overbooking and the demand that exceeds the inventory becomes lost sales. Therefore, at

the beginning, faced with ample inventory, the principal provides lower-powered incentives to smooth the

increment of demand, and then uses higher-powered incentives to clear the remaining inventory at the end.

D: Digital Marketing versus Traditional Marketing

In this extension, we apply our general framework to compare and understand how digital marketing and

traditional marketing vary in influencing the decision-making processes of the principal and the agent.

Digital marketing, characterized by unique features such as customer tracking over visits, comparison

shopping, and knowledge of customer choice sets, provides the agent with customer visit data. Leveraging

these data sources for targeted strategies, the agent can attract customers more efficiently. Consequently, the

agent’s effectiveness parameter, η, tends to be higher with digital marketing than with traditional marketing.
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(c) The firm’s expected profit versus
initial inventory level

Figure 19 Incentive, agent effort, and the firm’s expected profit for different initial inventory I0.

Parameter values : r= 0.025, η= 15, σ= 2, I0 = 10, and π= 2.

We conducted a numerical analysis to assess the impact of the effectiveness parameter on the decisions of

the principal and the agent. As shown in Figure 18, the average incentive is inversely proportional to the

agent’s effectiveness parameter η. A higher effectiveness parameter η means the principal needs less incentive

to induce the same level of effort from the agent to meet the inventory level, because the agent’s optimal

effort is expressed as Â(Zt) = ηZt. Additionally, the agent’s average effort first increases then decreases in

η over time. Interestingly, the principal’s expected profit is directly proportional to the agent’s effectiveness

parameter η.

Figure 18 illustrates that the average incentive provided to the sales agent in digital marketing is smaller

than that in traditional marketing under limited inventory conditions. This difference can be attributed to

the lower costs and increased effectiveness of attracting customers through digital marketing. At the onset

of the time horizon, when the firm has ample inventory, it prefers high sales effort to deplete the inventory.

Thus, it provides a high-powered compensation plan to the more effective sales agent in the digital marketing

channel, resulting in higher cumulative demand and lower remaining inventory. However, as the end of the

time horizon approaches, and inventory depletes, the firm becomes wary of overbooking. In response, it

offers a lower-power compensation plan to the digital marketing agent. Also note the firm’s expected profit

is higher in the digital marketing scenario.
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